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Structural health monitoring technologies continue to be pursued for aerospace 

structures in the interests of increased safety and, when combined with health prognosis, 

efficiency in life-cycle management. The current dissertation develops and validates 

damage identification technology as a critical component for structural health monitoring 

of aerospace structures and, in particular, composite unmanned aerial vehicles. The 

primary innovation is a statistical least-squares damage identification algorithm based in 

concepts of parameter estimation and model update. The algorithm uses frequency 

response function based residual force vectors derived from distributed vibration 

measurements to update a structural finite element model through statistically weighted 

least-squares minimization producing location and quantification of the damage, 

estimation uncertainty, and an updated model. Advantages compared to other approaches 
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include robust applicability to systems which are heavily damped, large, and noisy, with a 

relatively low number of distributed measurement points compared to the number of 

analytical degrees-of-freedom of an associated analytical structural model (e.g., modal 

finite element model). 

Motivation, research objectives, and a dissertation summary are discussed in 

Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background 

theory and the damage identification algorithm derivation followed by a study of 

fundamental algorithm behavior on a two degree-of-freedom mass-spring system with 

generalized damping. Chapter 4 investigates the impact of noise then successfully proves 

the algorithm against competing methods using an analytical eight degree-of-freedom 

mass-spring system with non-proportional structural damping. Chapter 5 extends use of 

the algorithm to finite element models, including solutions for numerical issues, 

approaches for modeling damping approximately in reduced coordinates, and analytical 

validation using a composite sandwich plate model. Chapter 6 presents the final 

extension to experimental systems—including methods for initial baseline correlation and 

data reduction—and validates the algorithm on an experimental composite plate with 

impact damage. The final chapter deviates from development and validation of the 

primary algorithm to discuss development of an experimental scaled-wing test bed as part 

of a collaborative effort for developing structural health monitoring and prognosis 

technology. The dissertation concludes with an overview of technical conclusions and 

recommendations for future work. 
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1 INTRODUCTION  

Fiber-reinforced polymer composites are used with increasing frequency in 

aerospace primary structures because of excellent and tailorable specific strength and 

stiffness characteristics. Full acceptance of their use in primary structures is hampered, 

however, by internal damage modes with little-to-no yield before failure. Aircraft 

structures in particular suffer from impact, overload, and fatigue damage, which can then 

grow internally under cyclic operational loads and overloads to the point of catastrophic 

failure either by strength exceedance or stiffness degradation leading to dynamic 

instability (aeroelastic flutter). The standard practice for preventing structural failure in 

manned aircraft throughout history has been to perform regular break-down inspections, a 

practice which has led to an exceptional safety record for traditional metallic airframes 

but at the expense of non-critical labor and time out-of-service. Newly designed aircraft 

include conservative safety factors to account for future growth and also unexpected 

damage events which might be missed during regular inspections or might propagate to 

failure before the next inspection, cutting into potential structural efficiency. In the case 

of future composite airframes and the associated uncertainty associated with invisible 

damage modes, however, these current safe-guards may prove inadequate or will cut into 

structural potential and increase costs in any case. In addition to aircraft, next generation 

space craft and orbital structures will be reliant on composites because of the potential for 

weight savings, thermal neutrality, and innovative design. In these cases, even the 
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smallest structural failure can lead to catastrophic loss of the system, and potentially the 

lives depending on it, and must be avoided at all costs. In this case, knowledge of 

potential defects before they reach critical levels is of paramount importance.  

Systems for structural health monitoring and prognosis have the potential to 

mitigate structural damage issues by acting like a biological nervous system. Such 

systems will analyze measured data along with other information, measured and 

estimated, to infer current and future damage states and operational capacities of the 

structure. The structural health monitoring components, which provide regular 

quantification of current structural health, will help with system safety and provide 

information for required maintenance. Prognosis systems, which when coupled with 

concepts of damage-tolerant design and life-cycle management provide a current estimate 

of life remaining, will lead to optimized and cost-efficient operating-cycles by allowing 

the structure to be taken out of service only when necessary.  

Although structural health monitoring will be useful and enabling in itself, the 

extension to structural health prognosis represents a true paradigm shift in aerospace 

structure design and operation. The key change is from traditional deterministic analysis 

to the fully probabilistic design and life-cycle management approaches which will define 

the future of the industry. Since prognosis must be based on probabilistic principles, with 

respect to current structural health and estimates of future operating conditions, damage 

occurrence, and damage evolution, fully developed prognosis capability will both 

demand and support this general evolution. One promising path to meaningful prognosis 
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capability is through a structural reliability based framework, such as the Pacific 

Earthquake Engineering Research Center (PEER) reliability system for earthquake and 

civil structure prognosis and management [1-1] and its adaptation to composite 

unmanned aerial vehicle (UAV) structures [1-2][1-3]. No matter how prognosis is 

formulated, however, the starting point should be regular probabilistic estimations of the 

current damage state. Furthermore, the damage should be accurately describable in a 

correlated analytical structural model so that the system can analyze the effects of 

potential damage evolution cases and build statistical databases. In other words, even 

viewed separately, the future prognosis-based industry standard will likely demand that 

structural health monitoring and model correlation be statistically formulated. 

Fully matured systems for structural health monitoring and prognosis, including 

constant real-time monitoring and consistently updated structural models and life-

remaining estimates unique to each structure, will certainly exist as a fundamental 

component of future aerospace structures. In the nearer term, however, even the most 

basic systems must be designed and implemented in order to begin realizing the potential 

of composite materials and the next-generation designs they will allow. Modern UAVs, 

for instance the General Atomics Predator shown in Figure 1-1, are well-suited platforms 

for development of structural health monitoring and prognosis, as well as candidates for 

the technology themselves. These increasingly popular aircraft make heavy use of 

composites in their primary structures, are designed using lower safety factors than  
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Figure 1-1: The all-composite Predator UAV by General Atomics. 

 

traditional manned vehicles, and are operated under harsh conditions with a minimum of 

between-flight inspection and no in-flight inspection. Being unmanned they are routinely 

operated to performance limits, and the common practice is to replace key structural 

components, such as wings, after a certain number of flight hours, regardless of the 

structure’s integrity, to avoid the prohibitive costs and uncertainty associated with regular 

inspection and damage tolerant structural analysis. Because unmanned vehicles are 

cheaper, more accessible, and less regulated than their manned counterparts, 

developmental on-board systems for structural health monitoring and prognosis can be 

flight tested with relative ease. Much of the work accomplished towards this dissertation 

has been developed with application to all-composite UAVs in mind.  
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 Aerospace Structural Health Monitoring Systems Overview 1.1

A complete system for structural health monitoring and prognosis for aerospace 

structures will ideally provide four levels of information: (1) damage existence; (2) 

damage location; (3) damage severity quantification, or damage identification, including 

possible information on size, severity, and damage type; and (4) estimate of remaining 

life. The first three levels are the goal of structural health monitoring; the fourth is the 

goal of prognosis. A high-level overview of a combined system is given in Figure 1-2, 

showing the major information components required from a structural health monitoring 

system which will support prognosis: damage information, estimation uncertainty, and an 

analytical structural model correlated to the current damage state. 

It can be assumed that structural health monitoring systems will include structural 

dynamic response from a distributed sensor network. High frequency dynamic response 

methods based on ultrasonic waves have been vigorously pursued because of their 

potential to detect and localize small damage cases. Although potentially successful in 

localizing damage close to sensors, the response can’t be easily and generally tied back to 

analytical models of the sort required for global structural analysis. It is possible to use 

the location ability with an assumed damage type (for instance, delamination of a certain 

size), but global prognosis will require the damage model to be as accurate as possible. 

High frequency methods are promising for damage location in specific areas but full-

vehicle damage identification will require more information related to the global system. 
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Figure 1-2: Overview of structural health monitoring (SHM) and prognosis for aerospace structures. 

 

Low frequency vibrations on the other hand are sensitive to changes in the 

structure (damage), are measurable in a global sense from a relatively small number of 

sensors, and exist in the same wavelength range as the operating structure meaning that 

changes in vibration are directly linked to structural performance in the operational 

domain. Additionally, low-frequency vibrations can be easily and accurately related to 

the response of analytical structural models, as required by prognosis. It can thus be 

assumed that low-frequency analysis is required in some form in a structural health 

monitoring system that supports prognosis. Additionally, the system must identify very 

small levels of damage relative to the size of the structure and resolution of a reasonably 
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distributed sensor grid, and coupling a finite element model with the system provides 

more information for this analysis.  

The disparity between vibration wavelength and damage size, however, means 

that structural health monitoring by low-frequency methods alone is challenging. One 

potential solution is to combine a low-frequency damage identification system with high-

frequency systems for damage location (see Section 1.2). A second is to use measured 

frequency response functions instead of the derived modal parameters—natural 

frequencies, mode shapes, and modal damping ratios—which have historically dominated 

low-frequency structural health monitoring research. Frequency response functions are 

attractive because they capture a wide array of vibration information, including complex 

and coupled modes and full damping characteristics. They additionally allow the use of 

almost unlimited amounts of data—generally thousands of complex measurements at 

every sensor location—and can provide information on nonlinear behavior which can be 

indicative of damage in nominally linear structures, as most aerospace structures are 

assumed to be.  

To summarize, it is proposed that a structural health monitoring system to support 

prognosis for composite aerospace structures has the following requirements:  

(1) Automatically detect, localize, and quantify unknown damage cases in a 

complex structure 

(2) Quantify the estimation uncertainty 
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(3) Update an analytical structural model (assumed to be a finite element model 

hereafter).  

For accurate and complete damage identification, the system must also be able to 

differentiate between changes in mass, stiffness, damping, and other system changes. To 

accomplish these goals, especially those of automation, describing damping adequately, 

and accuracy of estimation, such a system should include statistical finite element model 

correlation based on measured frequency response functions taken from a distributed 

sensor grid.  

The proposed structural health monitoring system solution, summarized in Figure 

1-3, operates in two independent stages: (a) damage location, and (b) damage  

identification. In the first step, damage is detected and localized using a range of 

information, as available. In the second step, the damage location information is used to 

select a set of parameters which are then updated to statistically identify the damage and 

update a finite element model. Options for damage location are discussed in more detail 

next; development and validation of a new method for statistical damage identification, 

including additional tools for model correlation and prognosis, are the main focus of the 

remainder of this dissertation. 
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Figure 1-3: Overview of the proposed system for structural health monitoring in two steps: 1) damage 
location, 2) damage identification (FRF=Frequency response function, FE=finite element). 

 Damage Location 1.2

Methods specifically for damage location by dynamic response analysis fall 

generally into two categories: those relying on lower-frequency structural vibrations, and 

those relying on high-frequency guided waves. The first category—including such 

methods as the residual force vector based method of Ricles and Kosmatka [1-4]—offers 

the possibility for structure-wide coverage—anywhere with stored modal strain energy; 

however, this comes at the expense of low sensitivity and fidelity, and is essentially 

confined to the spatial measurement resolution. Localization to a finer resolution, such as 

the finite element mesh, invites a lack of uniqueness. The method of element signature 
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recognition by Zimmerman [1-5] is shows promise in bridging this gap; however, as 

mentioned above, the fundamental difference in size between vibration shape wavelength 

and damage size will always prove challenging.  

Active high-frequency analysis techniques on the other hand, such as the methods 

presented in references [1-6] and [1-7], can lead to extremely accurate damage 

localization because of the direct sensitivity of low-wavelength (high-frequency) waves 

to small damage features and the necessity of these methods to interrogate locally. These 

methods generally require limiting assumptions, such as assuming damage type (e.g., 

delamination), and are usually only sensitive to symptoms of damage (e.g., changing 

damage boundaries and decrease in transmissibility) which are not connected to the 

operational structural response. Passive techniques, for example the methods presented in 

references [1-8] through [1-12], essentially ‘listen’ for events that could signal either 

damage occurrence or damage propagation and then use methods based in triangulation 

and optimization to locate the source. This can be a powerful approach, also providing 

highly accurate damage location. Limitations include that data acquisition must be 

operating at the instant of damage to capture the event and the damage event must create 

a measurable wave. For composite structures the first damage event may create a large 

wave but subsequent damage propagation may fall below the measureable threshold, 

limiting the ability of passive techniques alone to characterize a worsening structural 

state. An additional point pertaining to all high-frequency methods is that they are by 

nature local and only sensitive to damage occurring close to operating sensors. Global 
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structural health monitoring for general unknown damage cases on a realistically sized 

structure would therefore require a large number of sensors. These limitations aside, 

high-frequency methods—passive and active—will certainly be useful, even critical, in a 

functional global structural health monitoring system. 

In order to bridge this gap between sensor and hardware requirements and 

available technology in the short term, and to increase fidelity in the longer term, non-

destructive evaluation techniques (which are currently used as part of regular inspection 

routines in some commercial aerospace structures) could potentially be used to provide 

accurate localization. However, in addition to the requirement that non-destructive 

evaluation requires the structure to be temporarily removed from service and be available 

to technicians (impossible for on-orbit space structures, for instance), these methods have 

their own limitations, such as expense, operator variability, and the fact that they usually 

cannot be applied to internal structures without returning to full-scale break-down 

inspections.  

As indicated in Figure 1-3, it is therefore assumed that a realistic functional 

system would need to use a combination of techniques, and in particular, as many 

available techniques as possible in order to gain their benefits and reduce the impact of 

their deficiencies. This could include passive high-frequency monitoring (indicative of 

impact events and/or damage propagation) and localization, event logging by structural 

operators (similar to the current practice of pilots logging heavy landings in commercial 

aircraft), load event monitoring by force transducers and accelerometers, active high-
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frequency inspection of selected regions considered high-risk or high-criticality (leading 

edges, structural joints, main load paths), visual inspection information between 

operational cycles by technicians or during operation via camera, any non-destructive 

testing which is carried out because of events or as regularly required, and results of low-

frequency analysis based on specifically measured vibration data. In the proposed system, 

all of this information can be fused into a selection of parameters which may represent 

damage, and which are then updated to describe the damage state by the damage 

identification algorithm. So long as all potential damage cases are considered, the damage 

identification should then determine the current damage state within the limits of the 

provided parameters, updating the structural model in the process.  

 Damage Identification Algorithm Overview 1.3

The primary innovation of the dissertation is a statistical model-update method for 

structural damage identification. Required algorithmic inputs are a structural model, a set 

of reference data from the baseline structure if the model is not sufficiently correlated to 

the baseline state, and a set of reference data from the damaged system. Any information 

on damage location and form can be included as an input, if available. If the analytical 

model does not have high enough fidelity to the baseline data it can be correlated using 

optimization-based techniques, including a modified version of the damage identification 

algorithm. Once the analytical model is correlated to the baseline state, the damage 
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identification algorithm uses a statistically weighted least-squares minimization of 

frequency response function based residual force vectors to update the structural model, 

thereby producing refined location information, quantification of the damage, estimation 

uncertainty, and an updated structural model.  

The dissertation’s algorithm requires the following limiting assumptions to be 

true: 

1. The target physical system must be analytically modeled as a multiple degree-

of-freedom system in the linear frequency domain. 

2. Frequency response function reference data must be available across multiple 

frequency lines and degrees-of-freedom in a way that can be replicated by the 

analytical model with acceptably low error. Environmental factors affecting 

structural and model response, for example temperature, must be normalized 

between the structural test configuration and model. For practical 

implementation, for instance on an aircraft, this likely requires testing the 

structure in a controlled environment where boundary conditions and 

environmental factors can be controlled and measured with sufficient 

accuracy to be replicated precisely in the analytical model. 

3. System properties and potential damage parameters must be modeled as 

implicit, smoothly varying parameters which are tied to dynamic system 

response in the same regime as the reference data.  
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4. The system damping must be able to be captured using a linear combination 

of structural and viscous damping matrices (albeit with no restrictions on 

proportionality). 

5. The model must be capable of producing the global frequency domain 

dynamic response of the physical structure in the baseline and damaged states 

with a lower level of error than is caused by the target damage cases being 

identified. 

When properly implemented, the current algorithm demonstrates the following 

notable advantages: 

 The algorithm can identify damage in the form of changes in stiffness, mass, 

damping, and any parameter that can be structurally modeled and impacts 

vibration response. 

 The algorithm does not require modal parameters, although they can be 

incorporated to increase fidelity through damping model identification and 

frequency line selection.  

 The algorithm can be applied to systems with non-proportional generalized 

and/or heavy damping provided only that it can be modeled via complex 

stiffness and/or viscous damping matrices in the linear frequency response 

function formulation. 
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 Because of the basis in frequency response functions, large amounts of 

reference data can be incorporated into the damage identification process, 

producing a resilience to incoherent noise.  

 In combination with the integrated method for degree-of-freedom reduction, 

the algorithm also supports successful implementation in cases where the 

number of degrees-of-freedom in the model is far greater than in the reference 

data—a situation which is unavoidable for realistically sized aerospace 

structures. 

 Because of the connection to full-system structural models—e.g., dynamic 

finite element models—the only limitation in terms of structural applicability 

is related to computational processing power (which scales as a function of 

number of degrees-of-freedom). It should be noted that increasing the size of 

the update parameter set increases the potential for non-uniqueness—the curse 

of dimensionality—requiring additional down-selection from upstream 

damage location activities and care in implementation. 

 The statistical framework produces a posterior uncertainty values along with 

updated damage parameters, providing a relative estimate of confidence in 

updated parameters in addition to a basis for downstream prognosis. 
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 Summary of Dissertation 1.4

This dissertation is primarily concerned with development and validation of an 

algorithm for statistical damage identification and model correlation, in the context of 

supporting full-vehicle structural health monitoring and prognosis. Chapters 2 through 6 

are devoted to this work. In addition, Chapter 7 discusses development of a scaled-wing 

test-bed as part of a multi-disciplinary collaborative project on structural health 

monitoring and prognosis.  

The remaining chapters are organized as follows: 

 Chapter 2: Review of literature on structural health monitoring and statistical 

damage identification. 

 Chapter 3: Theoretical development of the damage identification algorithm and 

related aspects of structural dynamics followed by a detailed study of fundamental 

algorithm behavior on a two degree-of-freedom mass-spring system with 

generalized damping.  

 Chapter 4: Implementation of the algorithm on systems with noise followed by 

validation on a noisy eight degree-of-freedom mass-spring system with 

nonproportional structural damping and comparison to several competing damage 

identification algorithms.  

 Chapter 5: Implementation of the statistical damage identification algorithm on 

realistically sized structures, including development of a code coupling the 
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algorithm to a commercial finite element code with reduced coordinate reference 

data, and analytical validation and parametric studies on damped composite 

sandwich plate structures with additive noise and proportional damping. 

 Chapter 6: Experimental implementation of the statistical damage identification 

algorithm, including treatment of initial model correlation and exact measured 

damping modeling, and experimental validation of the method on a composite 

plates with impact damage. 

 Chapter 7: Development of an all-composite scaled-wing test-bed as part of a 

collaborative effort towards furthering technology for integrated structural health 

monitoring and prognosis.   

 Chapter 8: Conclusions and recommendations for future work. 
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2 LITERATURE REVIEW 

The problem of structural health monitoring has been driven since 1975 by the 

needs of a wide range of industries including those related to civil infrastructure, 

commercial and military aircraft, space structures, industrial machinery, and mass energy 

production. Work conducted on the subject by government laboratories, commercial 

entities, and universities around the globe has resulted in a large pool of published 

literature. Significant progress has been made towards solving the issues of meaningful 

data acquisition, data mining, feature discrimination, damage identification, and 

implementation of functional systems. Still, with the exception of a small number of 

focused applications, such as the condition monitoring of rotating industrial machinery, 

practical solutions to the many structural health monitoring problems have proven elusive 

and structural health monitoring remains an active research field.  

The specific problem of statistical vibration- and model-based damage 

identification as defined in Chapter 1 is directly treated in a relatively narrow subset of 

the related literature; however, the works most directly foundational to this dissertation 

have their roots in research across the field of damage detection and structural health 

monitoring. The current chapter therefore discusses early work and applications of 

structural health monitoring and provides an overview of vibration based damage 

detection methods before focusing on the damage identification specific literature which 

forms the primary theoretical basis of the dissertation’s main algorithm. 
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 Foundations and Applications of Structural Health Monitoring 2.1

One of the earliest structural health monitoring technology research efforts was 

related to the gradual deterioration of off-shore oil drilling platforms with studies seeking 

to determine if changes in global modal parameters could be used to identify the 

existence of damage in the primary platform structures. Examples include works by 

Vandiver ([2-1] and [2-2]), Wojnarowski et al. [2-3], Kenley and Dodds [2-4], Coppolino 

and Rubin [2-5], Shahriver and Bouwkamp [2-6], and Brederode et al. [2-7]. These works 

were largely restricted to identifying and monitoring the fundamental natural frequencies 

of the platforms and major structural members. Many concluded that environmental 

factors, such as changing mass on the platform and the effects of water motion, make the 

existence and structural impact of structural damage difficult to ascertain.   

The development of structural health monitoring capability for bridges also 

started early and has continued to be an active research field for several decades because 

of the scale of financial investment in these structures, a requirement for long functional 

lifespans, their susceptibility to damage from earthquakes and other environmentally 

induced deterioration, and cost of structural failures. A considerable portion of the 

approaches, for example the works of Savage and Hewlett [2-8][2-1], Salane et al. [2-9], 

Kato [2-10], Price [2-11], Brownjohn [2-12], and Mizra [2-13] focus on using vibration 

based quantities—especially natural frequencies, mode shapes, and/or frequency response 

functions—to detect the structural deterioration either on a global scale or in specific 
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components (e.g., reinforced concrete columns, pre-tensioned concrete beams, steel 

structures, or tensioned cables). Most researchers have achieved promising results while 

concluding that although changes in modal properties correlate with damage on the 

component level there remain significant challenges because of the low sensitivity of 

global dynamics to local damage and the corrupting influence of environmental effects 

and mass changes during use. The work of Farrar et al. [2-14] involved a multi-year 

effort collecting vibration data and testing various damage identification methods on two 

relatively small bridges, including imparting various levels of known damage on primary 

structural components. The authors found that simulated damage on one bridge had a 

negligible effect on global dynamics while real damage on the other bridge had to be 

severe before it could be identified with statistical significance above the test and 

environmental variability. Despite the challenges, modern research efforts, for example 

as detailed in Ahlborn et al. [2-15], continue with increasing promise as approaches 

mature and improving data acquisition technologies allow increasing measurement 

resolution. As summarized in Gastineau et al. [2-16], there were at least 72 companies 

around the world offering services in the general field of bridge structural health 

monitoring at the time of their survey. 

Commercial and military aircraft present another structural health monitoring 

interest that has led to a wide range of research efforts from government, commercial, 

and academic entities over several decades. Generally speaking, the methods fall into two 

primary categories: those concerned with monitoring specific high-strain locations in 



www.manaraa.com

22 

 

order to assess fatigue and remaining life (e.g., the works of Berens et al. [2-17], Hunt 

and Hebden [2-18][2-19], and Boller [2-20]) and those seeking to identify unknown 

damage cases to prevent sudden catastrophic failure (e.g., the works of Worden et al. [2-

21], Manson et al. [2-22][2-23], Diamanti and Soutis [2-24], and Panopoulou [2-25]). 

Even more so than with civil infrastructure, aircraft require regular and costly inspection 

through-out their life-cycles which could be reduced through automated health 

monitoring. Additionally, since airframes already require distributed onboard power and 

data systems for operation and are relatively small, they naturally lend themselves to 

integrated health monitoring systems such as those discussed by Boller [2-26] and Ye et 

al. [2-27]. More recently, structural health monitoring for unmanned aerial vehicles, 

where low-cost life cycles preclude regular detailed inspection, has grown into a discrete 

field of research with works such as those of Matt et al. [2-28], Nichols et al. [2-29], and 

Lanza di Scalea et al. [2-30].  

A large quantity of research has also been performed towards damage inspection 

and health monitoring for space structures, including launch vehicles, satellites, and 

reusable vehicles like the recently retired Space Shuttle. Examples include the works of 

Hunt et al. [2-31], Kim and Bartkowicz [2-32], and Renson [2-33]. Global vibration 

based damage identification methods are particularly attractive for mass-sensitive 

satellite structures which feature well defined load paths, low-structural redundancy, 

relatively simple loading conditions, and global vibrations that are likely to be sensitive 

to damage. The motivation for structural health monitoring of reusable launch and reentry 



www.manaraa.com

23 

 

vehicles is typified by the Shuttle Columbia which disintegrated during reentry after 

sustaining impact damage from a falling piece of foam during ascent. Systems for health 

monitoring and management of future launch and orbital systems are discussed further in 

references [2-34] through [2-38]. 

One notably successful health monitoring application is the case of rotating 

machinery diagnostics, usually referred to as condition monitoring. Rotating machinery 

offers advantages for fault detection and monitoring when compared to other structural 

health monitoring applications. Usually the systems exhibit a high consistency in health 

operating behavior which can be accurately characterized using vibratory signatures, 

allowing well characterized baselines. The machines are also stationary, accessible, and 

self-generating in their vibrations, meaning that they can be instrumented relatively easily 

and monitored during normal operation. Machine malfunctions are potentially expensive 

to large industries and so there has been a lot of motivation and financial support for 

solutions. Additional information can be found in references [2-39] through [2-41]. 

 Vibration Based Damage Detection Methods 2.2

The majority of damage identification methods investigated in the literature have 

been based on measured dynamic data and comparison to some kind of analytical model, 

from simple beams and plates to complex finite element models. The general idea in each 

case is to find an adjustment of model parameters—usually related to stiffness and/or 
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mass—which produces normal modes matching the measured response. The change in 

model parameters then is assumed to represent damage. Damage identification algorithms 

usually have two major components: (1) a metric derived from the measured data and 

model (if applicable) indicating the existence and location of damage; and (2) a 

numerical mechanism for quantifying damage severity. 

Change in natural frequencies was one of the earliest damage identification 

metrics pursued as a basis for detecting and identifying damage. Lifshitz and Rotem [2-

42] showed that dynamic moduli can be used to detect damage in simple elastomeric 

rods. Cawley and Adams in references [2-43] and [2-44] used the ratio of pairs of natural 

frequencies to determine the existence and location of damage in composite plates. 

Springer et al [2-45], Liang et al. [2-46], Salawu [2-47], Diaz Valdes and Soutis [2-48], 

and Williams and Messina [2-49] likewise investigated methods for natural frequency 

based damage identification in beam structures. Despite some success applying the 

methods to simple structures, damage metrics derived from natural frequencies alone tend 

to be too low in sensitivity and produce too few overall data to allow reliable information 

on damage location or severity.  

The addition of mode shapes has the potential to improve damage identification 

by adding spatial resolution and a higher quantity of relevant data in general. Approaches 

to damage location and identification using mode shapes include those based on the 

modal assurance criterion (MAC) or coordinate modal assurance criterion (a.k.a., 

COMAC) [2-50], mode shape based multiple damage location assurance criterion [2-51], 
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and system matrix based multiple rank perturbation theory [2-52]. Ricles and Kosmatka 

performed successful damage location and identification through regularized 

minimization of an error vector based on both frequencies and mode shapes in references 

[2-53] and [2-54]. More recently, Titurus and Friswell have demonstrated damage 

detection using successive parameter subset selections and modal residuals [2-55]. 

Operational deflection shapes, which are similar to mode shapes but include the 

superimposed effect of nearby mode shapes and are obtainable without measured input 

force or modal parameter estimation, have also been studied as a basis for damage 

identification. Examples are the works of Waldron et al. [2-55] and Maia [2-57]. 

Similarly, mode shapes based techniques can be evolved to use frequency response 

functions, methods for which are detailed in Section 2.4.  

Yet another extension is to calculate the second spatial derivative of a mode shape 

vector, producing modal curvature. Related methods for damage location and 

identification, for example the works of Pandy et al. [2-58] and Ratcliffe and Bagaria [2-

60], have been studied with a combination of promising and mixed results. One benefit of 

using curvature based damage damage metrics is that curvature can be derived from 

measured strain, opening up additional data acquisition options. 

Modal strain energy based methods have also been investigated for damage 

localization and identification and are different to many alternatives in that the resulting 

damage metrics are based on element properties rather than responses at the degrees-of-

freedom. One approach, with strain energy calculated based on pre- and post-multiplying 
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stiffness matrices by mode shape vectors, is presented by Shi and Law [2-61] with a 

followup work including updates to reduce modal truncation error [2-62]. Kim and 

Stubbs pursue a similar approach with two additional improved algorithms in [2-63]. 

Cornwell et al present a different approach for plate structures where the strain energy is 

calculated based on the measured curvature [2-64]. 

 Data Acquisition and Model Incompleteness 2.3

A pivotal question with all vibration-based damage identification approaches is 

how to acquire the required data on physical structures. In general, the level of damage 

identification achievable depends on the density of information available. This is why 

non destructive evaluation techniques include visual inspection, thermography, and 

manual ultrasonic inspection—all methods that provide near continuum coverage of the 

structure, including the potential of secondary inspections to zoom in on suspect regions. 

Most structural health monitoring applications, however, do not allow spatially 

continuous information because the structures are remote, inaccessible, or cannot be 

brought out of service long enough for detailed inspection. Damage identification 

approaches therefore generally rely on data measured at discrete locations on a 

structure—for instance using temporarily or permanently installed single-point dynamic 

sensors. The most common vibration data acquisition technique is hammer-impact or 

shaker excited dynamic testing with accelerometers mounted at the desired measurement 
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locations and dynamic force measured at the input. The acceleration and force-based time 

series can then be transformed by Fourier analysis into the frequency domain and 

combined into transfer functions; these can subsequently then be decomposed through 

modal parameter estimation into natural frequencies and mode shapes. The acceleration 

data can also be transformed into the velocity or displacement domain and derivatives 

calculated if desired. However, there are practical limitations to how many point 

measurement sensors (e.g., accelerometers) can be installed on a structure because of 

cost, wiring bulk and mass, sensor power requirements, data acquisition capability, and 

related issues.  

The first major question is therefore how to acquire enough data compared to 

critical damage size. Microelectromechanical system (MEMS) based dynamic sensors 

with wireless connectivity and mass-multiplexing capability are one potential future 

solution being pursued for structural health monitoring [2-66]. However, hurdles related 

to sensor sensitivity, power source, and telemetry remain to be overcome before MEMS 

sensors can be widely implemented for structural health monitoring. Scanning laser 

Doppler vibrometers (SLDVs) have also been pursued for use with damage identification 

since they allow rapid acquisition of large numbers of dynamic point measurements over 

densely spaced measurement grids, can be operated over moderate distances and do not 

require contact or mass-loading of the structure. Examples of related works are Tung et 

al., [2-67] and Waldron et al. [2-68].  On the negative side, SLDVs require line-of-sight 

access to the measurement locations and therefore cannot be used on internal structures 
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or when certain structures, such as aircraft and spacecraft, are in operation. For damage 

identification methods based on curvature, such as some strain energy and curvature 

mode shape methods, the required data can be derived from fiber optic based fiber bragg 

grating strain sensors [2-69], which can be highly accurate, multiplexible, and 

environmentally robust.  

The second major question is how to relate a small number of available data 

locations to an analytical model with many more degrees-of-freedom. An aircraft wing, 

for example, may require at least 10,000 nodes to be modeled accurately using finite 

element analysis but measured data from the physical structure may only be available 

from 100 discrete locations. Additionally, a finite element model will often have three 

translational and three rotational degrees-of-freedom at each node while measurements 

will likely only be available at one to three of the translational degrees-of-freedom. 

Approaches to bridging this gap include using the analytical degrees-of-freedom in place 

of unknown measured degrees-of-freedom [2-70] or including algorithms to either 

condense the analytical degree-of-freedom set to the measurement degree-of-freedom set 

[2-71], expand the measurement set to the analytical set [2-72], or a combination of both 

[2-73]. Methods for performing the algorithmic condensation and/or expansion are a field 

of research in of themselves, with applications other than damage identification. 

Examples of available methods are given in references [2-74] through [2-77].  
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 Deterministic Frequency Domain Damage Identification 2.4

Many algorithms for statistical damage identification, and the related field of 

parameter estimation, are essentially evolved versions of simpler deterministic methods. 

Although the focus of this dissertation is a statistical method, deterministic algorithms 

with similar damage metrics—those based on measured frequency response functions 

instead of modal parameters—are especially relevant.  

The work of Lin and Ewins [2-78] presents a deterministic method for model 

correlation based on the difference between measured and analytical frequency response 

functions. Changes to system mass, stiffness, and damping matrices are solved from the 

resulting linear equation using the singular value decomposition. Special attention is 

given to the case of incomplete measurement degrees-of-freedom compared to the 

analytical system, and analytical validation is performed on mass-spring and truss 

structures. Follow-up works by Imgerun, Visser, and Ewins in references [2-79] and [2-

80] further explore the method and attempt experimental implementation. Results are 

mixed because of challenges related to modeling damping accurately. A related work by 

Wang, Lin, and Lim [2-81] applies the method to analytical and experimental damage 

detection on a mild steel frame structure, adding algorithmic refinements including using 

a pseudo-inverse to solve the over-determined set of linear equations by least-squares. 

Although the analytical validations are very accurate, relative inaccuracy in the 
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experimental results is attributed to modeling error in the frame joints and damage 

parameters. 

The work of Araujo dos Santos et al. [2-82] develops a similar frequency response 

function difference method for damage identification, including a Taylor series expansion 

of damage based system matrix changes in order to generate sensitivities and allow a 

least-squares solution by pseudo-inverse. Through analytical validation studies the 

authors determine that dynamic expansion of the reduced measured degree-of-freedom 

set to the full analytical degree-of-freedom space is preferable to static expansion, and 

that the frequency response function method performs better than a previous similar 

technique using modal parameters.  

A similar approach can be developed using frequency response residual forces 

instead of the frequency response function data directly, a path also pursued in the current 

work. The paper of Napolitano and Kosmatka [2-83] presents development of such an 

algorithm based on deterministic least-squares minimization of frequency response 

residual forces, including first order Taylor series based sensitivity and dynamic 

reduction of analytical degrees-of-freedom to the reduced measurement set. Analytical 

validation on a highly damped truss structure produced favorable results, although 

experimental validation was not attempted. The work of Huynh et al. [2-84] develops a 

so-called damage location vector, which appears to be equivalent to a residual force 

vector, and, after applying dynamic expansion to the analytical degree-of-freedom set, 

uses the quantity to locate and qualitatively estimate the severity of damage in an 
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aluminum plate. The authors do not, however, solve for quantitative parametric damage 

estimation. 

Yet another least-squares sensitivity based approach to parametric damage 

identification is presented in the work of Zang and Imregun [2-85]. Based on previous 

model correlation work ([2-86] and [2-87]), this method uses minimization of two 

frequency response correlation functions to generate parametric model changes 

describing damage. The method is further extended using neural networks in the work of 

Zang et al. [2-88].  

Minimum rank perturbation theory takes a different approach by attempting to 

determine matrix perturbations which can be attributed to damage—a process known 

generally as optimal matrix update. Originally developed to use modal parameters, 

minimum rank perturbation theory is updated to use frequency response functions for 

structural health monitoring in the work of Zimmerman et al. [2-89]. Analytical and 

experimental validations give promising results, in some cases similar to a comparison 

with the modal version but requiring substantially less computational effort. 

Additional works using more varied approaches to parametric damage 

identification based on frequency response functions can also be found in works by 

Furukawa and Otsuka [2-90], Lee and Shin [2-91], Kouchmeshky et al. [2-92], 

Dackermann et al. [2-93], Bandara et al. [2-94], and Mohan et al. [2-95]. 
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 Statistical Model-Based Damage Identification 2.5

Statistical damage identification forms a much smaller group of research than the 

previously mentioned deterministic methods. The distinction between the two is that 

statistical methods quantify measurement errors and initial parameter uncertainty when 

solving the damage identification problem, and then additionally use that extra 

information to describe the updated damage state probabilistically. Quantifying the 

damage estimation uncertainty means that the damage estimate can be interpreted either 

as a range of possible values for a desired confidence level, or as a particular value 

(usually the mean) with an associated confidence factor. Consequences of the damage 

can then be bounded for a given confidence level. Alternatively, updated damage 

parameter uncertainty levels can be inspected relative to each other and parameters with 

high posterior uncertainty, possibly indicating a breakdown in the model or data, flagged 

for further inspection.  

Statistical methods reviewed in this section can be loosely split into two groups 

depending on their primary origin: (1) methods derived from statistics, and (2) methods 

derived from structural mechanics. Statistics-derived methods are discussed first; the 

second group, which forms the basis for the current algorithm, is the focus for the 

remainder of the current chapter. It should be noted that many of these works were 

developed for application to general parameter estimation and/or model correlation as 

opposed to damage identification or health monitoring. 
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Methods from the statistics-derived group generally try to minimize statistical 

assumptions—not assuming a distribution type for example—and then use numerical 

optimization to determine full distributions of the input parameters based on a statistical 

cost function. Often some form of sampling is used to help propagate, or back propagate, 

the uncertainty. The Markov Chain Monte Carlo algorithm presented by Higdon et al. [2-

96] is an example of a statistical sampling and optimization based methodology for 

solving inverse problems. In this approach, the uncertainty is forward sampled using 

Monte Carlo from trial parameter values and a directed search is then employed to find 

regions of parameter values which are statistically responsible for the output distribution 

based on a specified criteria (such as maximum likelihood). The statistical criteria level is 

generated and saved for each parameter value and the resulting histograms can be 

interpreted as the parameter value distributions. Additional examples of this general 

approach can be found in references [2-97] through [2-102]. 

Such ‘statistics’ methods usually require the use of statistical sampling and have 

been validated on small models only because of computational limitations. Fast-running 

meta-models, which reproduce the input-output relationship of the physical analytical 

model, can be used to make the methods more practical. Meta-models, discussed by 

Shultz et al. [2-103] and Hemez and Tippetts [2-104], can be as simple as low order 

polynomials, or more complex. The meta-models are fit to training data generated by 

running the finite element model at specific known combinations of parameter values in 

order to establish the input-output relationship over a certain parameter space. Once 
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trained, the meta-model can be used to propagate uncertainty approximately at a fraction 

of the computational cost as using the physical model directly, meaning that sampling is 

possible but at the cost of another layer of approximation. 

Methods from the ‘structural mechanics’ group seek to solve near-closed form 

engineering equations derived from knowledge of underlying system physics, usually 

incarnated as a finite element model of the structure. Many of the works include some 

incarnation of the Bayesian interpretation of linear least-squares minimization, and 

treatment of parametrically nonlinear problems then involves the iterative application of 

the linear solution. In this case, assumptions need to be made on the parameters’ statistics 

to allow problem formulations and solutions. The standard assumption is to make all 

distributions Gaussian normal, so random variables can be completely described by the 

mean and variance. In addition, randomness from different sources, such as material 

uncertainty and measurement noise, is assumed to be statistically independent. The 

solution then proceeds by iterative linearization, where the linearized system problem can 

be solved in a closed form at each step. Finally, despite the requirement to run the 

analytical model multiple times per iteration for these methods in order to compute 

sensitivities, the level of computation required can be assumed to be orders of magnitude 

less than that required for the numerical optimization and sampling required by the first 

group of methods, which is important for near real-time structural health monitoring.  

An early paper by Gura [2-105] describes algorithms for linear and nonlinear 

statistical parameter estimation using a generic response quantity. The mathematically 
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consistent extension to parametrically nonlinear systems is reached algebraically by 

careful successive applications of the known linear solution. The algorithm is not 

validated analytically or experimentally. In a doctoral dissertation [2-106] and summary 

report [2-107] Martinez applies the non-application-specific algorithm of Gura, using 

frequency response function difference implemented in a Kalman filter framework for 

finite element model update. In addition, the equivalence of inverse-covariance-weighted 

regularized linear least-squares minimization to several Bayesian optimal estimators is 

explained, and the method is successfully validated analytically on truss structures. The 

method is further validated experimentally on a polycarbonate truss structure and then an 

electronics component box in a follow-up work with Allen [2-108], demonstrating 

significant model improvement in relation to the measured test data. The widely 

referenced work of Collins et al. [2-109] presents a minimum variance approach to 

finding the best linear unbiased estimator (equivalent to the linear solution referenced by 

Gura), then directly applies an iterative version of the linear solution to parametrically 

nonlinear finite element model update problems using natural frequencies and mode 

shape vectors. The method was validated analytically on a two element beam model and 

then experimentally using measured data and a 28 element beam finite element model 

from the Saturn V rocket. In both cases, the model accuracy improved significantly in a 

low number of iterations. A completely independent work by Tarantola and Valette [2-

110] also derives general parameter estimation equations, equivalent to those of Gura, 

from the point of view of maximizing the posterior Gaussian parameter distribution while 
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minimizing the error in system equations. Validation on a few previously ill-posed 

geophysics problems demonstrates excellent performance even for difficult parameter 

estimation problems. Gura, Martinez, and Tarantola and Valette all independently state 

that direct iterative application of the linear solution to parametrically nonlinear problems 

(e.g., the method used by Collins et al.) is mathematically inconsistent, being equivalent 

to the assumption that iteration estimates are statistically independent from each other; 

however, the favorable analytical results obtained by Collins et al. suggest that the 

inconsistency may be acceptable. 

Ricles and Kosmatka [2-53] give an early application of statistical parameter 

estimation to the specific task of damage identification. This work applies a two-part 

process: (1) inspection of the modal residual force vectors to locate damaged members, 

and (2) application of the Bayesian update form of Collins et al. to find updated stiffness 

and mass parameters which minimize the difference between analytical and measured 

natural frequencies and mode shapes. Validation on an analytical space frame with 

varying levels of mass and stiffness damage gives excellent results, and experimental 

validation on a space frame, including uncertainty quantification, is achieved in a follow-

up work [2-54]. One of the interesting algorithmic additions in this method is a filtering 

step to ensure that only modes showing a greater change between baseline and damaged 

data sets than between baseline and correlated analytical data sets are used for damage 

update. Additionally, the practical case of having fewer measurement than analytical 
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degrees-of-freedom is treated by Guyan reduction and the approach is successfully 

validated for removing unknown rotational degrees-of-freedom. 

A similar technique based on minimization of the modal residual force vector is 

developed by Alvin [2-111] from the deterministic method of Hemez and Farhat [2-112] 

and validated analytically and experimentally on a portal frame. Hemez and Doebling [2-

113] subsequently adopt a version of the method for an experimental study on a multi-

degree-of-freedom mass-spring system and an engine mount, where incomplete 

measurement coordinates are treated by expanding mode shapes using dynamic 

expansion in a staggered ‘predictor-corrector’ scheme. Experimental validation results 

are positive, and the additional benefit of being able to inspect posterior parameter 

variances to assess updated parameter validity is emphasized and discussed.  

The work of Xia et al. [2-114] pursues a different approach to damage 

identification, using mean response values with a basic deterministic least-squares 

solution to produce mean parameter estimates and then estimating the covariance in a 

second step using a first order approximation. This approach appears to be statistically 

inconsistent when viewed from the perspective of statistical least-squares parameter 

estimation. Infinite parameter variance is implicitly assumed in the deterministic least-

squares solution and then a finite variance is assumed when computing the statistics. 

However, the method is successfully validated on an analytical and experimental 

cantilever beam with positive results, including verification of derived statistics on the 

analytical beam by Monte Carlo analysis.  
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The studies presented in references [2-115] through [2-118] have also attempted 

solutions to the problem of statistical parameter estimation in similar ways with varying 

results. It should be noted that of central importance in all these statistical least-squares 

methods—and the method developed in the following chapters—is recognition that the 

covariance matrix of the updated parameters can be interpreted as a measure of 

confidence in the estimation. Another subset of literature which is pertinent to the current 

development includes algorithms which statistically treat the randomness in 

measurements and parameters without explicitly quantifying the estimation uncertainty. 

Two works by Mottershead et al. (references [2-119] and [2-120]) are particularly 

noteworthy since they develop estimation algorithms based on filtering concepts which 

minimize the frequency response function based residual force vector. These are similar 

to algorithms presented in the next chapter, although the filter implementation is different 

and they do not quantify the estimation uncertainty.  

 Reviews 2.6

The papers reviewed in this chapter are necessarily selective and more thorough 

treatments can be found in a number of excellent reviews. Salawu et al. [2-121] discuss 

approaches to damage detection using changes in frequency. Zou et al. [2-122] review 

analytical model-based damage identification methods for composite structures. The 

work of Sohn et al. [2-123] covers all vibration-based structural health monitoring and 
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updates an initial review on structural health monitoring literature through 1996 by 

Doebling et al. [2-124], also summarized in a separate article by the same authors [2-

125]. Carden and Fanning present a similarly aligned review covering a wide range of 

vibration based damage detection literature [2-126], as do Yan et al. [2-127] and Friswell 

2007 [2-128]. Mode shape methods are reviewed by Gandomi et al. [2-129] and a review 

on vibration-based structural health monitoring with a specific emphasis on composite 

materials is additionally presented by Montalvão et al. [2-130].  

The 2014 text Structural Health Monitoring: A Machine Learning Perspective by 

Farrar and Worden gives a comprehensive overview of the field of structural health 

monitoring, touching on every facet of the field and its numerous challenges and 

solutions, and providing a particular focus on approaches based on machine learning 

techniques.  

The material contained in Chapter 2 was developed in collaboration with Prof. 

John B. Kosmatka. The dissertation author was the primary investigator and author of 

this work. 
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3 THEORETICAL ALGORITHM DEVELOPMENT 

The theoretical foundations and base equations of the dissertation’s primary 

damage identification algorithm are now developed. The algorithm relies on the target 

physical system being analytically modeled as a multiple degree-of-freedom system in 

the linear frequency domain with system properties and potential damage cases 

represented as implicit parameters. Special considerations are given for including 

damping and noise. The damage identification algorithm then provides a mechanism for 

updating the analytical system so that its analytical frequency domain response matches 

frequency domain reference data from the physical system. When the analytical model 

accurately represents the undamaged physical system and appropriate parameters are 

selected for modeling damage, the algorithm will provide an estimate of system damage 

and a measure of the estimation uncertainty.   

The linear frequency-domain dynamic theory on which the algorithm is built is 

derived first, followed by methods for modal decomposition for the cases of proportional 

and generalized viscous damping and structural damping. Reduction of the multi degree-

of-freedom system to a subset of degrees-of-freedom by dynamic reduction is presented 

next and the influence of noise is quantified. Derivation of the basic damage 

identification algorithm equations based on nonlinear Bayesian least-squares 

minimization is then presented. The chapter concludes with a walk-through 

demonstration of the algorithm’s functionality using a damped 2 degree-of-freedom 
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mass-spring system, including a study on the effect of using proportional methods to 

approximately model generalized viscous damping. 

 Dynamical System Description  3.1

All damage identification operations are performed in the frequency domain, 

where measured reference data derived from frequency response functions are compared 

to an analytical representation of the physical system based on mass, stiffness, and 

damping matrices. The analytical system has DN degrees-of-freedom and is defined in 

the frequency domain over N  frequency lines. Damage identification brings the 

analytical system into accordance with the reference data by altering a set of rN  

structural model parameters, previously selected as being likely to describe the current 

damage state (e.g., stiffnesses, densities, damping parameters, or essentially any smoothly 

varying model feature connected to dynamic response and representative of potential 

damage cases).  

To derive the algorithm, the analytical system equations of motion are first 

presented in the time domain with respect to displacement ( )x t , velocity ( )x t( )x( , 

acceleration ( )x t( )x( , and forcing vector ( )f t , as  

 *( ) ( ) ( ) ( )M x t C x t K x t f tx t C x t( ) ( )) ( **( )(( ) , (3.1) 
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where [ ]M  is the system mass matrix, *[ ]K  is the complex system stiffness matrix (real 

valued and represented by [ ]K  if structural damping is not present), and [ ]C  is the 

system viscous damping matrix. Although potential formulations for both structural and 

viscous damping will be discussed in detail later in the chapter, at this stage they can both 

be considered in their most general, unrestricted forms with no impact on the frequency 

domain system development. A function representing harmonic forcing at one or more 

degrees-of-freedom is defined as 

 ( ) ( ) j tf t F e , (3.2) 

where ( )F  is an 1DN  spectral representation of the forcing function. A harmonic 

solution can then be assumed as  

 ( ) ( ) j tx t X e . (3.3) 

where ( )X  is the 1DN spectral representation of the response. Taking the first and 

second time derivatives produces 

 ( ) ( ) j tx t j X e( )x t j( ) , (3.4) 

 2( ) ( ) j tx t X e( )( )x( ) ; (3.5) 

substituting the derivatives into Eq. (3.1), dividing by j te , and rearranging terms then 

produces the harmonic dynamic system equations in the frequency domain, 
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 * 2 ( ) ( )K j C M X F . (3.6) 

The parenthesized term on the left containing the system definition is defined as the 

dynamic stiffness (or impedance) matrix,  

 * 2( , )   k k kZ r K j C MK *K*KKKKKK , (3.7) 

where a discrete-time frequency definition k has been adopted in anticipation of the 

need to implement further equations at discrete frequency points, and r refers to damage 

identification parameters that are embedded within the system matrices. The parameter 

dependency is written explicitly in ( , )kZ r  but is also implicitly contained within the 

system matrices *K , M , and  C , depending on which parameters are being used. 

The 1DN  frequency response transfer function vector is defined at each frequency as  

 
( , )( , )
( )

k
k

k

X r
a r

F
X (( ,

(F
( ,X (
(F(F

. (3.8) 

Finally, the basic frequency response function dynamic system formulation for forcing at 

a single degree-of-freedom can be given as 

 ( , ) ( , )k kZ r a r i , (3.9) 

where i  is the nth column of the D DN N  sized identity matrix I , representing a 

unit forcing at the nth degree-of-freedom. If the frequency response according to forcing 
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at each degree-of-freedom in term is considered, the resulting relationships can be 

collected as  

 1 2( , ) { ( , )} { ( , )} { ( , )}
Dk k k k NZ r a r a r a r I{ ({ ( k{ ( ,{ ( ,{ ( ,({ ({ (({ ( ,( , (3.10) 

or 

 ( , ) ( , )k kZ r A r I , (3.11) 

where the full D DN N  frequency response function matrix ( , )kA r  is defined 

based on the assembled the single degree-of-freedom response vectors, as 

 1 2( , ) { ( , )} { ( , )} { ( , )}
Dk k k k NA r a r a r a r{ ( )} { ( )} { ( )}{ ( )} { ( )} { (
Dk k k N1 2{ ( , )} { ( , )} { ( , )})} { ( , )} { ( ,1 2 D

{ ( , )} { ( , )} { ( ,1 2{ ( , )} { ( , )} { (( , )} { ( , )} { (1 2 )}N)}{ ( )} { ( )} { ( ,{ ( )} { ( )} { (( )} { ( )} { ()} { ({ ( , )} { ( , )} { ()} { ( ,( , )} { ( , )} { ()} { ( ,1 2 . (3.12) 

Finally, taking multiplying both sides of Eq. (3.11) by 1( , )kZ r   shows that the full 

frequency response matrix and dynamic stiffness matrix are inverses, and thus the 

frequency response function matrix can be calculated from ( , )kZ r  as 

 1( , ) ( , )k kA r Z r . (3.13) 

 Modal Decomposition 3.2

The DN degree-of-freedom dynamic system can be decomposed into modal 

coordinates where all vibrational response is viewed as the scaled superposition of mN  

modal vibration shapes n , each vibrating at a fixed natural frequency n  and 
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exhibiting a particular modal damping ratio n , where n refers to the nth mode. 

Theoretically, mN  will always equal DN ; however, one of the benefits of modal 

coordinates is that accurate results can usually be reached by working with a subset of 

modes where m DN N . For an idealized undamped system (i.e., C  equal to zero, 

*K K ) the modes shapes and natural frequencies are the eigenvectors and 

eigenvalues, respectively, of the system, satisfying the equation 

 2 0n nK M , (3.14) 

for each mode n. Mode shapes adhering to this relationship, known as normal modes, are 

real valued and orthogonal to each other and the mass and stiffness matrices. 

Decomposition to modal space is achieved by changing from physical coordinates 

( )x t  to generalized modal coordinates ( )q t , using the transformation 

 ( ) ( )x t q t ,  (3.15) 

where  is the full mode shape matrix, formed as 

 1 2 mNmNmNNNN , (3.16) 

and ( )q t  contains a modal coordinate for each mode, as 

 

1

2

( )
( )

( )

( )
mN

q t

q t
q t

q t

,  (3.17) 
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Taking time derivatives of Eq. (3.16), substituting into Eq. (3.1), and pre-multiplying by 

T  produces  

 ( ) ( ) ( ) .T T TM q t K q t f tq t( )( )q( )( )  (3.18) 

Orthogonality between the mode shapes and system matrices gives the relationships 

 
,   if 

0,       if 
T n
m n

M m n
M

m n
, (3.19) 

 
,   if 

0,       if 
T n
m n

K m n
K

m n
, (3.20) 

where nM  and nK  are the modal mass and modal stiffness, respectively, for mode n.  

The quantities T M  and T K  are therefore diagonal and can be 

represented by nM  and nK , respectively. The uncoupled transformed system in 

generalized coordinates can then be rewritten as  

 ( ) ( ) ( ) .n nM q t K q t P t( )q( ))( ))  (3.21) 

where ( )P t  is the vector of modal forces, 

 

1

2

( )
( )

( ) ( )

( )
m

T

N

P t

P t
P t f t

P t

T f ,  (3.22) 

Premultiplying Eq. (3.14) by n  and expanding shows that natural frequency is related 

to the modal mass and modal stiffness by 
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 2 n
n

n

K
M

. (3.23) 

Dividing Eq. (3.21) on both sides by nM  produces mN  uncoupled single degree-of-

freedom harmonic oscillators of the form 

 2 ( )( ) ( ) n
n n n

n

P t
q t q t

M
( )nq ( )n ( )  (3.24) 

for mode n, each representing a mode shape vibrating at frequency n . Given initial 

conditions and loading the physical response can be recovered by solving the modal 

equations and transforming back into physical coordinates using Eq. (3.15). 

 Damping Models 3.3

For the previously described undamped system the modal decomposition is exact. 

However, physical structural systems always include some form of vibratory energy 

dissipation which is modeled as damping. As specified in Section 3.1, the two most 

common methods for modeling damping in aerospace structures are velocity proportional 

viscous damping using a matrix C  and displacement proportional structural damping 

using an imaginary component to the system stiffness matrix, ImK . Viscous damping 

can be further divided into proportional models or non-proportional generalized damping, 

where the former is essentially a simplification of the latter. These three mathematical 

damping models are now discussed. 
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3.3.1 Proportional Viscous Damping 

Proportional viscous damping occurs when C  is proportional to the global 

system mass and/or stiffness matrices. In this case, the system natural frequencies and 

mode shapes are equal to their undamped values and can be calculated using the 

eigenvalue analysis given in Eq. (3.14). Taking time derivatives of Eq. (3.15), 

substituting into Eq. (3.1), and pre-multiplying by T  produces the transformed system  

 ( ) ( ) ( ) ( )T T T TM q t C q t K q t f tq t C q t K( ) ( )) ( )T T( ) ( )( )q( ) ( )) ( )( )( ) ( )( )( )( ) . (3.25) 

The damping matrix C  is proportional to M  and/or K  and thus will also be 

orthogonal with respect to the mode shapes through the relationship  

 
,   if 

0,       if 
T n
m n

C m n
C

m n
, (3.26) 

with nC  defined in terms of the modal damping ratio n  as  

 2n n n nC M . (3.27) 

The damping term in Eq. (3.25), T C , is therefore diagonal and the transformed 

system will be uncoupled. Even if the system damping is not truly proportional, assuming 

that the relationship in Eq. (3.26) holds may be a reasonable approximation if the system 

is lightly damped (mode shapes and natural frequencies close to the undamped system 
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eigenvalues and eigenvalues) and the damping matrix is approximately orthogonal to the 

mode shapes (similar connectivity and value-ratios to the stiffness matrix).  

If the viscous damping matrix is unknown but can be assumed to be proportional 

the classic approach known as Rayleigh damping can be used to compute an approximate 

matrix in terms of the mass and stiffness matrices as 

 C K M , (3.28) 

where α and β are proportionality constants. The transformed damping term then 

becomes 

 2( )T
n nC M , (3.29) 

which, when compared to Eqs. (3.26) and (3.27), produces the modal damping 

relationship 

 1
2n n

n

. (3.30) 

Given estimated or measured values of n  and n , Eq. (3.30) can be solved for the 

proportionality constants α and β. If only damping on one mode is desired, the equation 

can be solved exactly for α to give stiffness proportional damping or for β to give mass 

proportional damping. If damping on two modes is desired, α and β can be found together 
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by writing the equation for each mode and solving simultaneously. Examination of Eq. 

(3.30) shows that a stiffness proportional damping formulation (i.e., 0, 0 ) will 

result in modal damping that increases with natural frequency; likewise, mass 

proportional damping ( 0, 0 ) will result in modal damping that goes to zero with 

natural frequency. While neither case is strictly observable in the real world, Rayleigh 

damping offers a simple way to match modal damping on a small number of modes and 

is thus often used by engineers to produce a convenient damped model with real 

eigenvectors and eigenvalues and uncoupled modal equations. However, even for 

sympathetic cases the damping prediction over more than two modes (i.e., equal to the 

number of proportionality constants) will rapidly loose accuracy unless the modal 

damping ratios are very similar over all modes of interest.  

It is possible to circumvent this two-mode limitation by using a summation of 

scaled mass and stiffness matrices, with proportionality constants calculated to match 

measured damping ratios, in a process called the extended Rayleigh method, which is 

related to the more generally described Caughey damping [3-1]. One method for 

implementing this concept, presented by Clough and Penzien [3-2] and derived in detail 

in Appendix A, produces a viscous damping matrix through the relationship 

 
1

1

2 2
c

Tc n n
n c n n

c c nn

C K M M
M

, (3.31) 
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where c refers to the highest mode of interest. So long as the basic assumption of 

proportional viscous damping holds and real natural frequencies and mode shapes can be 

derived which are approximately orthogonal to the mass and stiffness matrix (i.e., 

damping light and distributed), this method has the capability to produce a viscous 

damping matrix which accurately models measured damping across any number of 

modes. Even if the true damping is not proportional, the method may provide an 

acceptable approximation for the purposes of recreating modal damping ratios and 

frequency response functions. The restriction to proportional damping means that the 

Rayleigh methods are potentially useful candidates for plane structures and homogeneous 

sub-components of built up systems (e.g., wing skin regions and spars) where damping is 

distributed with mass and stiffness. However, for global built-up systems, such as 

aircraft, where global damping behavior is dominated by structural connections and joints 

and damping is concentrated in regions with negligible stiffness or mass, proportional 

damping methods may be inadequate.  

3.3.2 Generalized Viscous Damping 

When the viscous damping matrix is not proportional to the global mass or 

stiffness matrices the mode shapes and natural frequencies will not be equal to their 

undamped values. The mode shapes and natural frequencies for a system with 

generalized damping are found instead by performing an eigenvalue analysis of the 

system in state-space. This is accomplished by introducing the identity  
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 ( ) ( ) 0M x t M x t( ) ( ) 0x( ) () ( )((  (3.32) 

and combining with the system equations-of-motion, 

 ( ) ( ) ( ) ( )M x t C x t K x t f tx t C x t K( ) ( )) ( )( )( )( ) , (3.33) 

 to produce the state-space equation 

 
0 ( ) 0 ( ) 0

0 ( ) ( ) ( )
M x t M x t

M x t K C x t f t

( )( )( )( )( )( )
( )( ) (( )( )( )( ) )f( ) ( ) (( ) ( ) (( )( )( ) )( ) () (( )( )( )( )( )( )( )( ))( ))

. (3.34) 

Considering the free-vibration case ( ( ) 0f t ) and multiplying by 1M  gives the 

expression 

 1 1

00 ( ) ( ) 0
0 ( ) ( ) 0

II x t x t
I x t x tM K M C

( )( )(( )( )( )
1 1 ( ) 0( )( )( )(( )( ) 1 11 11 111 11 1 ( ) 0( )( )( )(( ) 0(( )( )(( ) 1 11 11 11 . (3.35) 

Introducing the solution  

 
( )
( )

tx t
e

x t( )( )x(( )(
 (3.36) 

and its derivative 

 
( )
( )

tx t
e

x t

( )x(( )( )x(
( )( )x(( )(

 (3.37) 

then allows the system to then be written in the standard eigenvalue problem form 
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 1 1

0 0 0
0 0

I I
IM K M C

. (3.38) 

The solution of Eq. (3.38) is 2 DN
 
complex eigenvalues  and 2 DN

 
complex 

eigenvectors  in complex conjugate pairs.  

The standard eigenvalue problem derived using state-space in Eq. (3.38) is 

equivalent to the quadratic eigenvalue problem  

 2 0M C K , (3.39) 

and the eigenvalues therefore satisfy the equation 

 2 22 0n n n n n . (3.40) 

When the system damping is less than critical ( 1n ), the solution to this equation is  

 2
, 1 1n n n n n nj ,  (3.41) 

for mode n. The undamped natural frequencies can therefore be recovered using  

 2 2
Re, Im,n n n , (3.42) 

where Re,n  and Im,n  are defined by the format , 1 Re, Im,n n n nj . The modal 

damping ratios are likewise found using 

 Re,n
n

n
.

 

 (3.43) 
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The eigenvectors are related to the mode shapes by the relationship  

 , 1
n

n n
n n

. (3.44) 

or equivalently as  

 Re Im
, 1

Re, Im,Re, Im, Im ReRe Im

n n
n n

n n n nn n n n
j  (3.45) 

where Ren  and Imn  are defined by the format , 1 Re Imn n n nj .  

The system mode shapes are therefore equal to the first n values from the first of each 

complex conjugate pair of eigenvectors for n = 1,2,…,ND. The non-proportionally 

damped mode shapes are orthogonal to one another (see reference [3-3]   for formal 

proof) and to the left-most matrix quantity in Eq. (3.38). However, they will not be 

orthogonal to the system matrices and thus systems with generalized viscous damping 

will have coupled modal equations-of-motion. Furthermore, the elements of complex 

mode shapes are not 180° out-of-phase with each other as with undamped and 

proportionally damped systems. When complex mode shapes are animated for 

visualization the node lines will move and the shapes will appear to be wave-like or 

galloping.  

It should be noted that in the case of both proportional and generalized viscous 

damping the resulting system frequency response function modal peaks will be decreased 
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from their undamped values. For sub-critical viscous damping ( 1n ), the so-called 

damped natural frequencies can be estimated using the relationship  

 21damped
n n n   (3.46) 

for each mode n. From this equation it can be seen that critical damping ( 1n ) 

corresponds to a zero value damped natural frequency. For overdamped systems ( 1n ), 

the damped natural frequencies can be estimated using  

 2 1damped
n n n .  (3.47) 

3.3.3 Structural Damping 

Structural damping (also known as complex stiffness or material damping) is 

modeled by adding an imaginary component ImK  to the stiffness matrix to produce the 

complex stiffness matrix 

 *
ImK K j K . (3.48) 

The resulting dynamic dissipation is independent of frequency and is often more accurate 

for losses caused by friction and other losses on the material level than viscous damping.  

When structural damping is present with no viscous damping, the free-vibration 

equations-of-motion can be written as 
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 *( ) ( ) 0M x t K x t( )x( ) . (3.49) 

The modal decomposition is then found by assuming the harmonic solution 

 ( ) j tx t e ,  (3.50) 

for eigenvalue 2  and eigenvector , then taking time derivatives, substituting into 

Eq. (3.49), and multiplying by 1M  to produce the complex eigenvalue equation  

 1 * 0M K . (3.51) 

For the general case of ImK  not proportional to K , solving the eigenvalue equation 

produces DN  complex eigenvalues and DN  complex eigenvectors. The eigenvalues 

have the form 

 2 1n n nj , (3.52) 

where n  are the natural frequencies and n  are the modal damping loss factors. The 

system natural frequencies can therefore be found as  

 Ren n , (3.53) 

and the modal damping can be found as 

 
Im
Re

n
n

n
. (3.54) 
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 The system complex mode shapes are equal to the eigenvectors [3-4], 

 n n . (3.55) 

As with the case of generalized viscous damping, the elements of the complex mode 

shapes are not 180° out-of-phase with each other and the complex mode shapes will be 

coupled. 

In the case of global stiffness proportional structural damping, where  

 * 1K K j , (3.56) 

the modal damping loss factors will all be equal to the global structural damping constant 

. The system will have real natural frequencies and modes and the natural frequencies 

will be equal to the undamped system natural frequencies. 

 Dynamic Reduction of Degrees-of-Freedom 3.4

The combination of present day analytical structural modeling methods (e.g., 

finite element method) and dynamic testing methods (e.g., scanning laser vibrometry) 

almost always produce models with many more analytical degrees-of-freedom than 

measurement degrees-of-freedom. For the data to be compared to the model either the 

analytical degrees-of-freedom must be reduced, the measurement degrees-of-freedom 

expanded, or a combination of the two until the model and reference data share a 
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common degree-of-freedom set. The method recommended herein is to reduce the 

analytical degree-of-freedom set to the test data set using the method of dynamic 

reduction [3-5], which is essentially a dynamic version of the classical method of Guyan 

reduction [3-6]. Dynamic reduction is performed by reorganizing and partitioned the 

dynamic stiffness matrix and associated vectors into the m-set of measurement (or 

master) degrees-of-freedom and the remaining s-set of slave degrees-of-freedom, as  

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

k k kmm ms m m

k k ksm ss s s

iZ r Z r a r

iZ r Z r a r
, (3.57) 

where subscripts m and s indicate membership in the m-set and/or s-set. The measured 

frequency response functions , ( , )k ma r , are known while the frequency response 

functions at the unmeasured analytical degrees-of-freedom, ( , )k sa r , are missing. 

Since the forcing degree-of-freedom must be in the m-set, 
si  is a vector of zeros. The 

partitioned dynamic equation second line can therefore be expanded to 

 ( , ) ( , ) ( , ) ( , ) 0k k k ksm m ss sZ r a r Z r a r , (3.58) 

and then solved for ( , )k sa r , giving 

 1( , ) ( , ) ( , ) ( , )k k k ks ss sm ma r Z r Z r a r . (3.59) 

Substituting this expression into the expanded first line and collecting terms leads to  

  1( , ) ( , ) ( , ) ( , ) ( , )k k k k kmm ms ss sm m mZ r Z r Z r Z r a r i . (3.60) 
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Comparing this expression to the expected dynamic system description in reduced 

coordinates,  

 ( , ) ( , )k km m mZ r a r i , (3.61) 

shows the reduced coordinate dynamic stiffness matrix to be 

 1( , ) ( , ) ( , ) ( , ) ( , )k k k k km mm ms ss smZ r Z r Z r Z r Z r . (3.62) 

For simplicity of implementation, a dynamic transformation matrix for reduction 

or expansion can be constructed as 

 1( , )
( , ) ( , )

mm
k

k kss sm

I
T r

Z r Z r
, (3.63) 

and the dynamic stiffness matrix, or any of the individual system matrices, are then 

reduced to the measurement m-set, for each frequency line, by partitioning and using the 

relationships 

 ( , ) ( , ) ( , ) ( , )T
k k k kmZ r T r Z r T r , (3.64) 

 ( , ) ( , ) ( , )T
k k kmM r T r M T r , (3.65) 

 * *( , ) ( , ) ( , )T
k k km

K r T r K T r , (3.66) 

 ( , ) ( , ) ( , )T
k k kmC r T r C T r . (3.67) 
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Additionally, the full degree-of-freedom frequency response function matrix can be 

recovered by  

 ( , ) ( , ) ( , )k k k ma r T r a r . (3.68) 

The dynamic method for reduction or expansion has the advantage of being exact, 

so long as the parameter set used to create the matrices being reduced is known exactly 

and the excitation degree of freedom is contained in the m-set. Reduced matrices 

therefore produce the exact same frequency response functions at the m-set degrees of 

freedom as the full matrices. It should be noted that reduction makes ( , )k mZ r  

nonlinear with r , even if it was linear in the unreduced system. However, if 

measurement points happen to be clustered close to damage parameter locations, the 

parameter dependency in 1( , )k ssZ r  will be weak and the nonlinearity will be reduced. 

Throughout the damage identification algorithm’s operation system matrices are 

reduced to the measurement degrees-of-freedom set as soon as possible (generally as 

soon as damping has been added), after which all matrices and vectors have the same 

dimensional basis. The m subscript is therefore generally omitted hereafter, although it is 

implied if measurements are not available at every analytical degree of freedom.  

Dynamic expansion can also be applied to mode shapes. The undamped 

transformation matrix is formed using real normal natural frequencies in place of the 

specified update frequency lines, to produce, for mode n, 
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 12 2
( )

( ) ( ) ( ) ( )

mm
n

n nss ss sm sm

I
T r

K r M r K r M r
. (3.69) 

Mode shape expansion is then conducted using the transformation 

 ( )n n n mT r , (3.70) 

for each mode n. 

 Measured Frequency Response and Residual Force Vector 3.5

Returning to the initial dynamic system description, it can be seen from Eq. (3.9) 

that the analytical frequency response function matrix from forcing at a single degree-of-

freedom in reduced coordinates can be calculated from the dynamic stiffness matrix (in 

reduced coordinates if d DN N ) by  

 1( , ) ( , )k ka r Z r i . (3.71) 

The real-life system being modeled by ( , )ka r  includes randomness, both in 

the true value of parameters and in additive noise, and in irreducible modeling error. It is 

therefore assumed that the relationship between the measured frequency response 

functions, ( )ka( )ka( , and the model can be represented by  

 ( ) ( , ) ( ) ( )k k k ka a r e v( ) ( , ) (k k k) ( , ) () ( , ) (a(( )) ( , ) () ( , ) () (( )) ( , ) () ( , ) (( , )) ( , ) (( ) (( ) () (( ) (( )) (( )( , ) (,, , (3.72) 
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where ( )ke  is a vector of deterministic error and ( )kv  is a vector of random zero-

mean additive noise (Note: if the random noise is known to not be zero mean, the mean 

can be removed from ( )kv  and added to ( )ke , creating the same affect). The 

vector rr  represents ‘true’ system parameters best corresponding to ( )ka( )ka( — i.e., the 

desired damaged parameters—and ( , )ka r, )k  is the model evaluated at these unknown 

values. It is further assumed that the two basic random quantities, parameter vector r  

and noise vector ( )kv , and all quantities dependent on them are close to Gaussian, 

and therefore can be described adequately through their mean and covariance matrix.  

With the deterministic modeling error separated, the noise is assumed to be zero 

mean with covariance ( )vv kS . The parameter vector begins each update with a prior 

(or baseline correlated) distribution described by mean 0̂r  (where the caret denotes an 

estimate) and covariance 
0 0ˆ ˆr rS . After update, the parameter vector will have a posterior 

(or damage correlated) distribution described by mean rr , and covariance rrSrr . The 

frequency response function covariance can be found by first writing its expected value, 

(denoted by ...E ), as 

 ( ) ( , ) ( ) ( )k k k kE a E a r e v( ) ( ) ( )( k k k) ( , ) ( ),a( ) ( , ) ( )( ) ( , ) ( )) ( , ) () (( )) ( , ) ( )) ( , ) (( , )) ( , ) (( ) ( )( ) ( )( )) (( )( , ) ( ) . (3.73) 

Bringing the expected value around each term and recognizing  

 ( , ) ( , )k kE a r a r, ) ( , ), k k) ( ,) ( ,, ) () ( ,) ( ,) ( ,) (() (( , (3.74) 
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 ( ) ( )k kE e e , (3.75) 

 ( ) 0kE v , (3.76) 

then produces the expression 

 ( ) ( , ) ( )k k kE a a r e( ) ( , ) (k k k) ( , ) () ( , ) (a( ) ( , )( ) ( , ) () ( , ) () ( , ) () ( , ) (( ) ( , )) ( , )) ( ,( , )) ( ,( )( )(( , ) . (3.77) 

The measured frequency response function covariance matrix is written by 

starting with  

   ( ) ( ) ( ) ( ) ( )
T

aa k k k k kS E a E a a E aaa k( )( )aa ( ))
T

)((( ) ( ) ( )( ) ( ) ( )) ( ) (( ) ( ) ( )( ) ( ) ( ) ( )
T

( ) ( ) ( ) (( ) ( ) ( )( ) ( ) ( )) ( ) (( ) ( ) ( )( ) ( )) ( ) (( ) ( )( ) ( ) ( )) ( ) (( ) ( )) ( ) (( ) ( )k k k k )k k k k( ) ( ) ( ) () ( ) ( ) ((( ) ( ) ( ) , (3.78) 

then substituting in Eqs. (3.71) and (3.77) and canceling terms to give 

   ( ) ( ) ( ) T
aa k k kS E v vaa k( )( )aa ( )) . (3.79) 

Recognizing the definition of zero-mean noise covariance finally produces the 

relationship 

   ( ) ( )aa k vv kS Saa k( )( )aa ( )) . (3.80) 

The residual force vector, describing the dynamic system imbalance in terms of 

internal forces when the analytical model is compared to the measured frequency 

response functions, is defined as  
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 ( , ) ( , ) ( )k k kR r i Z r a( )k((((((((((( . (3.81) 

Based on the relationship ( , ) ( , )k kZ r a r i  in Eq. (3.9), it is obvious that if 

( ) ( , )k ka a r(( )k )a(( ))( ))  then the residual force will equal a vector of zeros, and any 

deviation from ( ) ( , )k ka a r(( )k )a(( ))( ))  will produce non-zero values. 

The residual force vector covariance matrix is defined by the measurement noise, 

and its value ( )RRS r  at a parameter point value ( , )kR r  can be found in terms of 

the measured frequency response function noise covariance as follows. First, the residual 

force vector expected value is written in expanded form as 

 ( , ) ( , ) ( )k k kE R r E i Z r a( )k((( . (3.82) 

The expected value is then brought onto each term and applying  

 E i i , (3.83) 

 ( , ) ( ) ( , ) ( )k k k kE Z r a Z r E a( )k(((( ) ( )( )( ) ( )( )k, )k( ) ( , ), )( ) (( ) (( ) ( )( )( )( )( ) ( )( ) () (( )( )( )( , )(( , )( , )( , )( ) (( ) ( , (3.84) 

along with Eq. (3.77) gives the expression 

 ( , ) ( , ) ( , ) ( )k k k kE R r i Z r a r e)k, )), ), ))), ) . (3.85) 

The difference between the residual force vector and its expected value can then be 

written 



www.manaraa.com

77 

 

 ( , ) ( , ) ( , ) ( )k k k kR r E R r Z r v . (3.86) 

The residual force vector covariance matrix can be calculated by starting from the 

basic definition of covariance, 

 
( ) ( , ) ( , ) ( , ) ( , )

T

RR k k k k kS E R r E R r R r E R r
, 

  (3.87)  

substituting in Eq. (3.82), and canceling terms to give  

 ( ) ( , ) ( ) ( ) ( , )
TT

RR k k k k kS E Z r v v Z r . (3.88)  

This expression simplifies to 

 ( ) ( , ) ( ) ( ) ( , )
TT

RR k k k k kS Z r E v v Z r . (3.89)  

Recognizing the noise covariance allows the residual force vector covariance at 

parameter point r  to be written finally as 

 ( ) ( , ) ( ) ( , )
T

RR k k vv k kS Z r S Z r , (3.90)  

for each frequency k . 
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 Least Squares Formulation of Damage Identification Equations 3.6

The goal of the damage identification algorithm is to use the model ( , )kZ r , 

previously correlated to the baseline state 0̂{ }r , along with ( )ka( )ka , measured from a 

current damaged state, to estimate the mean and covariance of the unknown damage 

parameter vector rr . The quantity ( , )kZ r , representing system changes—e.g., from 

damage—is defined as  

 0( , ) ( , ) ( , )k k kZ r Z r Z r)k, ), )))), ) , (3.91) 

where ( , )kZ r, )k  is the dynamic stiffness matrix evaluated at { }r}. Additionally, the 

irreducible residual force vector from noise and modeling imperfection can be expressed 

as 

 ( , ) ( , ) ( )k k kR r i Z r a) ( ) ( ), k k k) ( , ) (, ) ( , )) ( ) () ( , ) () ( , ))) ( ,) ( , )) ( ,, )) ( ,(((((( , (3.92) 

or equivalently, by expanding the measured frequency response function vector,  

recognizing ( , ) ( , )k kZ r a r i, ) ( , )k k) ( ,) ( , i, ) ( , )) ( ,) ( ,,) ( ,() ( , , and canceling terms, as 

 ( , ) ( , ) ( ) ( )k k k kR r Z r e v, ( )) ( )k k k( )) ( , ), ( ), ) ( , ), ) ( )) ( , )) ( ,) ( )) ( , )) ( ,() ( , ( )( ) ( )( )( ( )( , ) .  (3.93) 

The initial residual force vector for parameter set 0r  can then be seen to equal 

 0( , ) ( , ) ( ) ( , )k k k kR r Z r a R r( ) ( )k k( ) ( ,(( ) ( ,((( ) (( ) (( )( )( )( ) . (3.94) 
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Inspection of these expressions revels that as model parameters approach the true 

physical values—i.e., as 0r rr —the reducible system imbalance ( , )kZ r  goes 

to zero, and 0( , ) ( , )k kR r R r, )k,, ; or, in the case of zero noise or modeling error, 

0( , ) 0kR r .  

In the general case, with noise and modeling error present, 0( , )kR r  does not 

go to zero, and the damage identification becomes an optimization problem. To proceed, 

quantities need to be reconfigured so that all information can be processed together via 

batch processing, a cost function must be established, and solution equations derived.  

3.6.1 Batch Processed Least-Squares 

To implement batch processing, quantities with frequency dependency must be 

stacked with real and imaginary components separated into single large-dimension 

vectors and matrices so that all available information can be processed at the same time 

in a single real-valued equation for each iteration step. These batch-processing, or batch-

stacked, quantities are developed following reference [3-7], and are denoted herein by 

underbars. The analytical and experimental frequency response function and residual 

force vector batch-stacked quantities are, respectively, 
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1

1

2

2

Re ( , )

Im ( , )

Re ( , )

Im ( , )( )

Re ( , )

Im ( , )

N

N

a r

a r

a r

a ra r

a r

a r

, (3.95) 

 

1

1

2

2

Re ( )

Im ( )

Re ( )

Im ( )

Re ( )

Im ( )
N

N

a

a

a

a a

a

a

( )111( )1)1(

( )111( )1( )1

( )2( )22( )2

a ImI ( )22( )2( )2( )2

( )( )NN( )

( )( )NN( )

, (3.96) 

 

1

1

2

2

Re ( , )

Im ( , )

Re ( , )

Im ( , )( )

Re ( , )

Im ( , )

N

N

R r

R r

R r

R rR r

R r

R r

, (3.97) 
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i

i

i

i i

i

i

, (3.98) 

and the batch-stacked diagonal noise covariance super-matrix is 

1

1

( )

( )

( )

( )

Re [0] [0] [0]

[0] Im [0] [0]

[0] [0] Re [0]

[0] [0] [0] Im

vv

vv

vv N

vv N

vv

S

S

S

S

S

RRR

. (3.99) 

All other batch-stacked vector and matrix quantities also follow these forms, with the 

exception of the non-diagonal dynamic stiffness matrix which must be batch-stacked as 

1 1

1 1

Re ( , ) Im ( , ) [0] [0]

Im ( , ) Re ( , ) [0] [0]

( )

[0] [0] Re ( , ) Im ( , )

[0] [0] Im ( , ) Re ( , )
N N

N N

Z r Z r

Z r Z r

Z r

Z r Z r

Z r Z r

   (3.100) 

in order to keep information compatible if the batch-stacked equations are expanded back 

out into single complex equations for each frequency. (Note: an alternative approach to 

batch-processing for parametrically linear systems is recursive processing, wherein each 
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real and imaginary frequency equation is processed independently and the estimate 

improves after each iteration [3-7].)  

With batch-stacked quantities thus defined, the dynamic system relationships can 

be rewritten in a simplified form, giving, for instance, the frequency response system 

equation 

 ( ) ( )Z r a r i , (3.101) 

or 

 1( ) ( )a r Z r i ; (3.102) 

the residual force vector, 

 ( ) ( )R r i Z r aa ; (3.103) 

and residual force vector covariance, 

 ( ) ( ) ( )
T

RR vvS r Z r S Z r . (3.104)  

3.6.2 Bayesian Least-Squares Cost Function and Solution 

The main damage identification algorithm is now derived as follows. Following 

the reasoning of Tarantola and Valette [3-8], it is desired to find an estimate ˆ{ }r  of 

parameter set { }r} that maximizes the posterior probability distribution (i.e., is most 



www.manaraa.com

83 

 

probable) while also satisfying the governing system equations. When quantities are 

assumed to be Gaussian, the posterior parameter distribution ˆ( )r r  can be written as 

 

11
0 00 02 ˆ ˆ ˆ ˆ

0ˆ( )
T

r rr r S r r
r r D e , (3.105) 

where 0D  is a constant. Maximizing a Gaussian distribution requires minimizing the 

exponential terms inside the negative—i.e. minimizing 
1

0 00 0ˆ ˆ ˆ ˆ
T

r rr r S r r . As 

shown by Tarantola and Valette, minimizing the posterior distribution while satisfying 

the system equations, here represented through minimizing the residual force vector, is 

equivalent to a generalized regularized least-squares minimization problem where the 

parameter and system terms each include weighting by the inverse of their respective 

covariance matrices. For the residual force vector-based damage detection problem, the 

least-squares problem can therefore be defined as the search for the parameter set ˆ{ }r  

minimizing a cost function ˆ( )J r , defined as 

 
0 0

11
0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) TT

RR r rJ r R r S r R r r r S r r( )ˆ̂̂ T( )( ˆ̂ , (3.106) 

where the residual force covariance is calculated at the linearization point r̂ , which is 

initially the prior parameter point 0̂r . The cost function can alternatively be viewed in 

two parts, as 

 ˆ ˆ ˆ( ) ( ) ( )R rJ r J r J r , (3.107) 

where 
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1

ˆ ˆ ˆ( ) ( ) ( ) ( )T
R RRJ r R r S r R r( )ˆ̂̂ T( )( ˆ̂( )( , (3.108) 

 
0 0

1
0 0ˆ ˆ ˆ ˆ ˆ( ) T

r r rJ r r r S r rˆ ˆr rˆ r̂ . (3.109) 

Minimization of ˆ( )RJ r  corresponds to satisfying the dynamic system equations by 

minimizing the residual force vector; minimization of ˆ( )rJ r  corresponds to maximizing 

the posterior Gaussian parameter distribution, making the solution more likely in a 

statistical sense, and providing the updated parameter set with posterior variance values. 

Compared to a standard deterministic least-squares formulation, which would only seek 

to minimize the first term (also known as the functional term), the presence of the second 

term has the practical effect of providing regularization, penalizing the parameters for 

moving away from their original values and producing a more stable and realistic 

solution.  

The least-squares solution is found by setting the variation of ˆ( )J r , taken with 

respect to r̂ , equal to zero, giving 

 
ˆ ˆ( ) ( )ˆ ˆ ˆ( ) 0

ˆ ˆ ˆ
R rJ r J rJ

J r r r
r r r

, (3.110) 

which, after invoking the variational principle  produces  

 
ˆ ˆ( ) ( )0

ˆ ˆ
R rJ r J r
r r

. (3.111) 

The derivative of ˆ( )rJ r  can be calculated directly as  
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0 0

1
0

ˆ( ) ˆ ˆ2[ ] { } { }
ˆ r r

J r
S r r

r
. (3.112) 

The derivative of ˆ( )RJ r , however, involves an implicit relationship with r̂  and thus 

the chain rule must be used, producing   

 1
0

( ) ˆ2 ( ) ( )
ˆ ˆ

T
R

RR
J R r

S r R r
r r

. (3.113) 

The quantity ( )
ˆ

TR r
r

is the transpose of the residual force vector sensitivity 

defined at the linearization point ˆ{ }r  (which is left general for now), and hereafter 

denoted N . For the pth parameter ˆpr , it can be calculated from the original definition 

of the residual force vector as 

 
ˆ ˆˆ

( ) ( )( )
ˆ ˆ ˆp p pr rr

R r Z r
i Z r a a

r r r
a

)((( )((
aa

r̂
( )

aa
r

, (3.114) 

and the sensitivities with respect to each parameter can then be assembled into a single 

matrix to form 

 
ˆ{ }

( )
ˆ r

Z r
N a

r
( )( )Z (ZZ )Z (ZZ )

a
))

a
)Z (( )Z (ZZ )Z (Z

aaaa
ˆ { }ˆ{ }ˆrr̂r

. (3.115) 

In this equation the double-square bracket denotes a 3-dimensional matrix of size 

2 2d d rN N N N N  and multiplication with aa  is performed with the second 

dimension, producing a final batch-stacked sensitivity matrix of size 2 d rN N N .  
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At this point, a linear Taylor Series expansion (1st order) is used to produce an 

explicit relationship between the objective function ˆ( )J r  and all instances of ˆ{ }r . 

Following Gura [3-9], linearized iterations serve only to determine a more accurate point 

from which the final solution may be reached in a single step. The actual parameter 

estimation is then carried out in one step from this optimal point using the original 

statistics, meaning that the optimal estimate is only computed once. This interpretation 

has mathematical relevance since the alternative—having each iteration lead to a more 

refined estimate of the final solution—requires the implicit assumption that iterations are 

statistically independent. For a given linearization point, a coupled Taylor series 

linearization of ˆ[ ( )]Z r  is thus written with respect to the most recent linearization point, 

ˆ{ }r , and the initial estimate, 0̂{ }r , as 

 *
0 0

ˆ{ }

( )ˆ ˆ ˆ ˆ( ) ( )
ˆ r

Z r
Z r Z r r r

r
( )( )Z (ZZ

0
) ˆ ˆ)Z ((

r0
( ) ˆ ˆ( )(Z

r
( ))Z (Z

0000
{ }ˆ{ }ˆr 0r

 (3.116) 

 *
0 0

ˆ{ }

( )ˆ ˆ ˆ ˆ( ) ( )
ˆ r

Z r
Z r Z r r r

r
( )( )Z (ZZ ) ˆ ˆ)Z ((

r r
( ) ˆ ˆ( )(

r
Z

r
( )

r0
)Z (Z

0 r0 r0
{ }ˆ{ }ˆrr 0r

. (3.117) 

The quantity *
0̂( )Z r  is the most recent linearization evaluated at 0̂r , and is not 

necessarily equal to 0̂( )Z r  since the linearization is an approximation of the possibly 

nonlinear function ˆ( )Z r .  
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In the interests of reaching a closed form equation for r̂ , Eq. (3.111) can be 

rewritten by substituting the derivatives and expanding the residual force vector, written 

with respect to the estimate r̂ , to form 

 0 0

11
0ˆ ˆ ˆ0 2[ ] { } { } 2 ( ) ( , ) ( )

T
r r RR k kS r r N S r i Z r a( )k(((

.  

(3.118) 

Introducing the linearized dynamic stiffness matrix expression in Eq. (3.116), and 

collecting terms gives  

 0 0

1 1 *
0 0 0ˆ ˆ ˆ ˆ ˆ0 ( ) ( )

T
r r RRS r r N S r i Z r a N r rNNNNa NNNa N

  

(3.119) 

Solving for ˆ{ }r , substituting in Eq. (3.117), and rearranging then produces 

 
0 0

11 1
0

1
0

ˆ ˆ ( ) ...

ˆ ˆ ˆ                                   ... ( ) ( ) .

T
r r RR

T
RR

r r S N S r N

N S r R r N r r

(3.120) 

Finally, it is recognized that this equation will be implemented iteratively, where 

the most recent parameter estimate is used as the current linearization point—i.e., 

ˆ ˆ{ } { }ir r . By defining the inverted term in parentheses as 1iQ , the final coupled 

iterative estimation equations can be written as 

 1
0 01 1ˆ ˆ ˆ ˆ( )T

RR ii i i i i ir r Q N S r R N r r , (3.121) 
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0 0

11 1
1 ( )T

r r RR ii i iQ S N S r N , (3.122) 

where 1ˆ{ }ir  becomes the posterior parameter estimate of { }r}, and 1[ ]iQ  becomes the 

posterior parameter covariance matrix ˆˆ[ ]rrS , after the final iteration.  

The covariance relationship in Eq. (3.122) can be verified following Hemez and 

Doebling [3-10], where the updated parameter covariance is approximated to the first 

order as 

 
0 0

1
1 1

T
new

pp p pS S S
p p

  (3.123) 

for dynamic system imbalance  and parameters p . Recognizing that in this case the 

dynamic system imbalance is described by the residual force vector, the expression can 

be rewritten with respect to the current variables as 

 
0 0

1
1 1

ˆˆ ˆ ˆ
( ) ( )
ˆ ˆ

T

rr r r RR
R r R r

S S S
r r

. (3.124) 

This expression is exact for the previously linearized system. It should be noted that the 

posterior covariance is conditional on the measured data from the damaged system and 

the subsequent updated parameter estimate; i.e., 

 ˆˆ cov T
rrS r E r r E r r r r

T
r E r r r rr E r r rE r r r .  (3.125) 
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3.6.3 Linearization and Sensitivity Formulations 

As described for a generic system in Appendix B, the standard approach for 

parameter estimation of dynamic systems of the type described herein has been to 

compare the measured data and analytical model response directly. For noisy frequency 

response functions the system can be rewritten as  

 ( ) ea a r v( ) eeva a( ) e( )a( ) , (3.126) 

where the noise vector and modeling error are combined into ev  for brevity. The batch-

stacked form is used here for frequency dependent terms; however, the relationships 

presented in this section could equivalently be given in terms of frequency. The 

functional imbalance for a system at point r  is expressed as 

 ˆ ˆ( ) ( ) ea a r a r vˆ(ˆa a( ))( )ˆa( )) , (3.127) 

where ˆ( )a r  is the analytical system imbalance between the damaged state and 

system point r̂  , 

 ˆ ˆ( ) ( ) ( )a r a r a r̂(ˆ(() () (())) . (3.128) 

The frequency response function system model is inversely related to ( )Z r  and so is 

nonlinear in the parameters, even if the governing structural model is linear—i.e., 

qualitatively speaking, if ( ) ( )Z r Z r . To apply parameter estimation the system must 
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therefore be linearized, and is done so with a first order Taylor series expansion about 

point r̂  as 

 ( )ˆ ˆ( )
ˆ

a r
a r r r

r r
r̂r rrr . (3.129) 

The gradient or sensitivity matrix ( )

ˆ

a r
r r

 can be calculated several ways. The 

most direct is to use a finite difference method to calculate the gradient estimation 

directly, giving  

 
ˆ ˆ( ) ( )( )

ˆ
i i

i

a r a ra r
r r

. (3.130) 

An alternative expression can be found by using the matrix derivative chain rule to write 

the derivative of the frequency response function in terms of the derivative of the 

dynamic stiffness matrix [3-11]. This approach can be advantageous in the common case 

when the dynamic stiffness matrix is linear with update parameters but the frequency 

response functions are not. To derive the relationship, the frequency response function is 

first written in terms of the dynamic stiffness matrix using 1( ) ( )a r Z r i
1) ( ) i
1) ( )) ( ,  

 
1 1( ) ( )( )

ˆ ˆ

Z r i Z ra r
i

r r rr rr

. (3.131) 

The identity matrix 1( ) [ ( )]I Z r Z r  is then multiplied into the derivative, as 
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1 1( ) ( ) ( )( )

ˆ
ˆ

Z r Z r Z ra r
i

r rr
r

, (3.132) 

and the chain rule is used to expand the terms, leading to 

 

1
1

1 1

1
1

( )( ) ˆ ˆ( ) ( ) ...
ˆ ˆ

( )
ˆ ˆ                ... ( ) ( )  ...

ˆ

( )
ˆ ˆ                ... ( ) ( )

ˆ

Z ra r
Z r Z r i

r rr r

Z r
Z r Z r i

r r

Z r
Z r Z r

r
r

.i

 (3.133) 

Recognizing  

 
1

ˆ ˆ( ) ( ) ,I Z r Z r  (3.134) 

 
1

ˆ ˆ( ) ( ) ,Z r i a r  (3.135) 

and  

 
1( ) ( )

,
ˆˆ

Z r a r
i

r r rr
 (3.136) 

then rearranging and collecting terms, leads to  

 
1( ) ( ) [ ( )] ˆ2 ( ) ( )

ˆ ˆ ˆ
a r a r Z r

Z r a r
r r rr r r

. (3.137) 
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By rearranging further and reverting to the previous double-bracket notation for a three 

dimensional array, the sensitivity equation can be written in terms of the linearization 

point as 

 
1( ) ( )ˆ ˆ( ) ( )

ˆ ˆ
a r Z r

Z r a r
r rr r

( )( )(( ) ˆ) )ˆ)(((((( ˆ( )(( )(( )ˆ(( ) ˆ( ) )(((( )ˆ̂( ) )((( )(( )(
rrrr rr

)
ˆ

(
ˆ̂r

. (3.138) 

The dynamic stiffness sensitivity can then be approximated using finite difference, as 

 
ˆ ˆ( ) ( )( )

ˆ

Z r Z rZ r
r r

. (3.139) 

A potentially more accurate formulation, which can be thought of as an exact 

sensitivity formulation, is found by not ever linearizing the frequency response function 

directly, but instead using the relationship between ( )a r  and ( )Z r  to create an 

expression for aa  in terms of ( )Z r  and then linearizing the less nonlinear dynamic 

stiffness matrix. Starting with Eq. (3.125), substitute in 1( ) ( )a r Z r i1) ( )) ( ) i1) ( )) (  and 

1
ˆ ˆ( ) ( )a r Z r i , and collect terms to give 

 
11ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )a r a r a r Z r Z r iˆ̂̂) ( )) ( )
11ˆ̂) ( )) (( )ˆ̂) ( )
1111 ˆ )ˆ( )ˆ( )( ) 1( )( 1 ( )(((( )( )( )( )( ))(( )( . (3.140) 

The identity matrix terms 
1

ˆ ˆ( ) ( )I Z r Z r  and 1( ) ( )I Z r Z r
1) ( )) () (  are then 

added to produce  

 
1 11 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )a r Z r Z r Z r Z r Z r Z r i

1 11
( ) ( ) i

1( ) ( )( ) (
111 ( )( )ˆ1) 1 )) ( )( )(( )( )( )) () (())  (3.141) 
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and collecting terms gives 

 
1 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )a r Z r Z r Z r Z r i

1) ( )) ( ) i
1) ( ) . (3.142) 

This expression can now be substituted back into the original noisy frequency response 

function difference expression in Eq. (3.128), and recognizing again 1( ) ( )Z r i a r
1) ( )1) (1  

produces  

 
1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ea a r Z r Z r Z r a r v
1

ˆ ( ) ( )( ) ( ) ( ) ( ) ( )(ˆ eev( ) ( )( ) ( )a a( )ˆ e))
1

ˆ ˆˆ
1

)ˆ ˆ( ) ( )ˆ ˆˆ̂̂ ( ) ( )( ) (a( )) ( ) ( )))( ) () (( )( ) () (( ) )( ) () (( )( )( )( ) ( )( ) (( ) ( )( ) ( )( ) ( )( ) (( ) () (( )( ) . (3.143) 

Using the relationship ( ) ea r a v) eea v) eaa , this expression can be expanded and 

rearranged to 

 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ea a r Z r Z r Z r a Z r Z r v
1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )( )(ˆ eeva a( ) ( )ˆ e))
1

ˆ ˆ ˆˆ ˆ
1

)ˆ ˆ ˆ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ
1

a( )) ( ) ( ) ( ) ))( ) ( ) ( ) () ( ) ( ) (( ) ( ) ( )( ) ( ) ( ) () ( ) ( ) (( ) ( ) ( ) ( )(( )( )( )( ) ( ) ( ) (( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )) ( ) (( ) ( ) ( )( )( ) ( ) ( )
. 

 (3.144) 

The dynamic stiffness matrix ( )Z r)  can now be expanded in a 1st order Taylor 

series expansion about the point r  for each frequency ω, as 

 ( )ˆ ˆ( ) ( )
ˆ

Z r
Z r Z r r r

r r

( )Z (Z))) ˆ( ˆ( )ˆ( )((( ))( )(( )( ) )Z (ZZ ) ˆ)Z ((
r r

( ) ˆ( )(Z
r

)Z (Z
rr rrr rr

rr r̂r ˆr ˆr
, (3.145) 

and substituting into the last equation gives 

 
1 1( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ
e

Z r
a a r Z r a r r Z r Z r v

r r

( )Z (Z )Z (Z 1
( )( ) eev( ) eˆ ˆ )ˆ ˆ( )ˆ ˆ ))((((( )(

1
ˆ(ˆa a( )ˆ ))

1
ˆ̂

1
ˆ̂̂( )( )ˆ̂̂

1
a( )) ( )( )( )( )( )( )( )(( )( )( )( )(( )( )( )( )(( )( ) ))((( )( )(( )( )

rr rr rr r̂r ˆr ˆr
 (3.146) 
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where the order of ˆr r̂r r  and aa  have been reversed, since they operate on 

different dimensions of the three dimensional dynamic stiffness sensitivity array. 

Comparing this dynamic-stiffness-linearized sensitivity equation to the directly 

linearized noisy frequency response function expression generated by combining Eqs. 

(3.128) and (3.129), 

 ( )ˆ ˆ( )
ˆ

e
a r

a a r r r v
r r

ˆ eever r
( )a(ˆ( )ˆa a( )) ( )( )a(( )a(

r rrr r( )a( )) ( )( )

ˆr ˆr ˆr
, (3.147) 

suggests that the new exact sensitivity expression can be written as 

 
1( ) ( )ˆ( )

ˆ ˆ

a r Z r
Z r a

r rr r

( )( )(( )( )((
a

( )(
a

)((
aaaaaaaa

r̂r rr rr rr
. (3.148) 

It can also be seen in this comparison that the noise in Eq. (3.146) is now biased by 

1
( ) ( )Z r Z r) ; however, since the linearized equation is intended for an iterative 

update, where r̂  approaches rr , this bias will approach unity and can be ignored.  

Comparing the two frequency response sensitivity forms in Eqs. (3.138) and 

(3.148) shows that they only differ by which frequency response function form is used 

for the post-multiplication—the analytical frequency response function calculated at the 

most recent linearization point for the direct linearization sensitivity form or the 

measured frequency response function for the exact sensitivity form. The second 

expression is the same as that of used by Lin and Ewins [3-12] and Imregun et al. [3-13] 

for deterministic damage detection work. Lin further showed in a subsequent work [3-14] 



www.manaraa.com

95 

 

that their sensitivity expression can be considered exact compared to a linear gradient 

eigen-sensitivity approximation. In practice, it leads to faster and more stable 

convergence than the direct sensitivity form, which in turn is more stable than just 

applying finite difference directly to the nonlinear analytical frequency response function. 

The relationship between frequency response function and residual force vector 

sensitivities can be examined by left-multiplying Eq. (3.146) by ˆ( )Z r  and rearranging 

terms, producing 

 ( )ˆ ˆ( ) ( )
ˆ

e
Z r

i Z r a Z r v a r r
r r

( )Z (Z )Z (ZZ ˆ( ) r̂( ) ee rv( )( ev( ) v( )( e
)Z ( )Z (ZZZZ ))Z ((( )( )(Z

rra
( )

aa
)Z (Z

rraaa ra
rr rr rr r̂r ˆr

. (3.149) 

This expression is equivalent to a Taylor series expansion of the residual force vector 

calculated around r̂ ,  

 ( )ˆ ˆ( ) ( )
ˆ

R r
R r R r r r

r r
ˆ) r r̂) r r) )R(RR ))R((( )( )( )R(RRRR) rrr)

ˆr ˆr ˆr
, (3.150) 

where ( ) ( ) ( ) eR r i Z r a Z r v) ( ) ( )) ( ) ( ) eev) ( ) ( )) ( ) ( e( )( )( ) , and, as given previously in Eq. (3.115) 

using the notation N , 

 ( ) ( )

ˆ ˆ

R r Z r
a

r rr r

( )(( )(
a

)((
aaaaa

r̂r rr
. (3.151) 

Thus, it is seen that the residual force vector sensitivity, which is the same as that 

developed for the deterministic parameter estimation schemes of Napolitano and 
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Kosmatka [3-15], is also based on linearization of the dynamic stiffness matrix as 

opposed to the frequency response function.  

Additionally, a direct form of the residual force vector sensitivity can be written, 

analogously to the frequency response function sensitivity case, as 

 ( ) ( ) ˆ( )
ˆ ˆ

R r Z r
a r

r rr r

( )((( ) ˆ( )ˆ((
a()(( )(a( )a(

r̂r rr
. (3.152) 

The direct and exact sensitivity forms for frequency response based and residual 

force based parameter estimation are summarized in Table 3-1. The difference between 

direct and exact methods, as was shown, is related to whether the required Taylor series 

linearization is applied to the frequency response function, as is done for the direct 

formulations, or to the dynamic stiffness matrix (or equivalently to the residual force 

vector), as is done for the exact methods. 

3.6.4 Frequency Response Difference Form 

Based on the development in Sections (3.5) and (3.6.1-3.6.3) the residual force 

vector based damage identification algorithm can alternatively be written in a frequency 

response difference form with exact sensitivity. First, the residual force covariance 

inverse is written from Eq. (3.101) by the rules of matrix inversion as 

 
1 11( ) ( ) ( )

T
RR vvS r Z r S Z r , (3.153) 
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Table 3-1: Summary of direct and exact formulations for frequency response function and 
residual force vector based sensitivities. 

Dynamic 
residual Type Equation Expression 

Residual 
force exact (3.151) 

( ) ( )

ˆ ˆ

R r Z r
a

r rr r

( )((( )((
a

)((
aaaaa

r̂r rr
         

Residual 
force direct (3.152) 

( ) ( ) ˆ( )
ˆ ˆ

R r Z r
a r

r rr r

( )((( ) ˆ( )ˆ((
a()(( ( )a( )a(

r̂r rr
         

Frequency 
response exact (3.148) 

1( ) ( )ˆ( )
ˆ ˆ

a r Z r
Z r a

r rr r

( )( )(( )( )((
a

( )((
a

)((
aaaaaaaa

r̂r rr rr rr
 

Frequency 
response direct (3.138) 

1( ) ( )ˆ ˆ( ) ( )
ˆ ˆ

a r Z r
Z r a r

r rr r

( )( )(( )( ) ˆ) )ˆ)(((((( ((( ) ˆ( )( )(()(( )((((( )(( )(
r̂r rrr rr

)
ˆ

(
ˆ

 

 

where superscript ... T  denotes the inverse of the transpose. Substituting into ˆ( )RJ r  in 

Eq. (3.103) then gives 

 
11ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

TT
R vvJ r i Z r a Z r S Z r i Z r a

11 ˆ
1

( )ˆ
TT

a( )(ˆ1111TT
( ) ( )( )( ) ( )11T

( ))( )( (vv) () )( ()( ) ( )( ) (( ) ( )( ) ( )( ) ( )( ) ( )(( ) (() ()
, 

 (3.154) 

which, by recognizing 
1

( ) ( )Z r i a r  and rearranging, can alternatively be 

rewritten  

 

1 11ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

R vvJ r a r Z r Z r a S a r Z r Z r a .
1

( )( )
1

ˆ
1

)ˆ( )ˆ11 ( ) ( )( ) ( )1 ( )(( )( )( )(( ) ( )( )(( )( )( ( )( )( )vv ))( ) () (vv ( ) () ( )( ) (( )(
 

 (3.155) 
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It can be seen that as the iterations progress and r  approaches r̂ , 
1

ˆ( ) ( )Z r Z r  

will approach the identity matrix, and this functional term will approach  

 1ˆ ˆ ˆ( ) ( ) ( )T
R vvJ r a r a S a r a1 ˆ1 ( ))ˆ1T

vv a( )(ˆ1 ( )( . (3.156) 

This is the same functional expression as would be found if the problem was set up based 

on the difference between analytical and measured frequency response functions in the 

first place. Combining the functional back with ˆ( )rJ r  produces the cost function,  

 0 0

11
0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )T T

a vv r rJ r a r a S a r a r r S r rvv 0( ) 0( )(T T1 ˆ ˆ ˆˆ ˆ ˆ1 ˆ̂1 ˆ ˆ( )ˆ̂1 ˆ ˆˆ1 a r r0( ) 0( )(ˆ̂̂( )( )( ˆ̂( )(
. 

 (3.157) 

This expression is essentially the same cost function as developed by Martinez [3-7] for 

model correlation; however, Martinez’s sensitivity formulation and Kalman filter based 

implementation strategy are different from that pursued in this dissertation.  

Equivalent frequency response function based damage identification equations 

can be derived from the residual force versions in Eqs. (3.121) and (3.122) by expanding 

out the residual force covariance matrix and recognizing that 

 1( ) ( )iZ r R a r ai i a , (3.158) 

 1 ( )( )
ˆi
i exact

a r
Z r Ni r r

. (3.159) 

The resulting coupled update equations are  
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1
0 01 1

( ) ( )ˆ ˆ ˆ ˆ( )
ˆ ˆ

T

vvi i i
i iexact exact

a r a r
r r Q S a r a r rir rr r

(((((((((
a

((((((
a

r
, 

(3.160) 

and 

 
0 0

1

1 1
1

( ) ( )

ˆ ˆ

T

r r vvi
i iexact exact

a r a r
Q S S

r rr r
. (3.161) 

 Summary of Algorithm 3.7

The main damage identification algorithm operates as described in the bulleted 

lists below. The algorithm is given a set of inputs to start. An iteration loop is then used 

to calculate required quantities and implement the driving update equations until 

convergence is reached. The algorithm then returns a set of standardized outputs. Details 

are as follows: 

Algorithm Inputs:  

 Damage parameters at initial healthy values:  

0r  

 Initial damage parameter covariance matrix:  

0 0r rS  
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 Analytical model evaluated at initial damage parameter values:  
*

0( )K r , 0( )M r , 0( )C r  

 Set of frequency lines over which to perform damage identification: 

,   1,2,...,k k N  

 Experimental reference data from the damaged structure, batch-stacked 

over analysis frequency line set:  

aa  

 Experimental reference data covariance matrix, batch-stacked over 

analysis frequency line set:  

vvS  

Iteration Loop i, for i = 0, 1, 2, …: 

1. Create dynamic stiffness matrix at ir  in full coordinates using Eq. (3.7): 

 * 2( , ) ( ) ( ) ( )i k i k i k if f ff
Z r K r j C r M r   

2. Generate the dynamic reduction transformation matrix using Eq. (3.63) at 

each frequency k : 

1( , )
( , ) ( , )

mm
i k

i k i kss sm

I
T r

Z r Z r
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3. Reduce the dynamic stiffness matrix to measurement degree-of-freedom 

set at each frequency k : 

( , ) ( , ) ( , ) ( , )T
i k i k i k i kfZ r T r Z r T r

 

4. Assemble batch-stacked dynamic stiffness matrix over all frequency lines: 

1 1

1 1

Re ( , ) Im ( , ) [0] [0]

Im ( , ) Re ( , ) [0] [0]

( )

[0] [0] Re ( , ) Im ( , )

[0] [0] Im ( , ) Re ( , )

i i

i i

i N i N

i N i N

Z r Z r

Z r Z r

Z r

Z r Z r

Z r Z r

 

5. Create batch-stacked residual force vector using Eq. (3.103): 

 
( )iiR i Z r aa

  

6. Create batch-stacked residual force covariance matrix using Eq. (3.104): 

 
( ) ( ) T

RR i vv iiS Z r S Z r
   

7. Generate batch-stacked dynamic stiffness sensitivity using Eq. (3.139) 

(Note: reduction is performed using ( , )i kT r  on the dynamic stiffness 

matrix or, equivalently, on the full-coordinate sensitivity matrix): 
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ˆ{ }

( ) ( )( )
ˆ

i

i ii

r

Z r Z rZ r
r

  

8. Generate batch-stacked residual force sensitivity matrix using Eq. (3.115): 

 
{ }

( )
ˆ

i

i
i

r

Z r
N a

r
( )Z (Z )Z (( )Z (ZZZ

a
( )i( )

a
ˆ

aaaa
{ }i{ }r̂r

  

9. Generate the quantity 1iQ  using Eq. (3.121): 

 
0 0

11 1
1 ( )T

r r RR ii i iQ S N S r N
  

10. Generate the updated damage parameter set using Eq. (3.122): 

 
1

0 01 1ˆ ˆ ˆ ˆT
RRi i i i i i ir r Q N S R N r r

  

11. Generate the absolute value damage parameter difference mean: 

1 1ˆ ˆ ˆ
i i ir mean r r  

12. Check for parameter convergence: 

a. If 1ˆ
ir  is greater than or equal to the predefined convergence 

tolerance, increase i and return to the start of the iteration loop. 

b. If 1ˆ
ir  is less than the predefined convergence tolerance, break 

the iteration loop. 



www.manaraa.com

103 

 

Converged algorithm outputs: 

 Updated damage parameter values:  

1ˆ d̂ir r
 

 Updated damage parameter estimation uncertainty:  

2
1 ri d

diag Q  

 Damage correlated analytical model:  

* *
1( ) ( )i dK r K r

 

1( ) ( )i dM r M r  

1( ) ( )i dC r C r  

 Algorithm Walk-Through with Damped Mass-Spring System Example 3.8

Basic functionality of the current algorithm is now demonstrated using a simple 2-

degree-of-freedom mass spring system example with combinations of structural and 

generalized viscous damping. System details are described first along with derivation of 

the equations of motion, system matrices, and basic dynamic behavior of the baseline 

system. The damage cases are then studied, followed by a step-by-step walk-through of 
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the damage identification algorithm and comparison to results with different levels of 

damping. The example concludes with a study of approximate methods for modeling 

generalized damping, including damage identification results compared to the exact 

damping case. 

3.8.1 Baseline System Description  

The two degree-of-freedom mass-spring system is designed to approximate the 

first two modes of a built-up cantilever structure with two masses connected in series via 

standard linear springs and grounded at one end, as shown in Figure 3-1. Forcing is 

applied to the first degree-of-freedom for the purpose of generating frequency response 

functions. Damping is implemented as a combination of structural damping in-line with 

the springs and viscous spot damping on each degree-of-freedom. There are therefore a 

total of 10 system parameters: two masses, two spring stiffnesses, two structural damping 

coefficients, and two viscous damping coefficients. Three specific baseline damping 

scenarios are considered throughout the study:  

(1) Light viscous damping, with modal damping on the order of 3%; 

(2) Heavy viscous damping, where all damping parameters are increased by a 

factor of 10 from the lightly damped case to give modal damping ratios on the 

order of 30%;  

(3) Light viscous damping combined with light structural damping, which could 

be considered representative of general aerospace structures. 
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Figure 3-1: Simple wing structure idealized as two degree-of-freedom damped mass-spring system. 

 

The viscous and structural damping values were chosen to produce severely non-

proportional damping matrices. Baseline mass, stiffness, and damping parameter values 

for all cases are provided in Table 3-2. 

Basic dynamic quantities for the baseline system are derived as follows. The 

equations of motion can be written in matrix form as 

 

1 1 1

2 2 2

1 1 2 1 2 2 1

2 2 2 2 2

0 ( ) 0 ( )
...

0 ( ) 0 ( )

1 1 1 ( ) ( )
                 ...

1 1 ( ) 0

A

B

m x t c x t

m x t c x t

k j k j k j x t f t
k j k j x t

( ) 0 ( )( ) 0 (( ) 0 (01 11( )1( )1 1(1 11 1111 ...
( )( ) 002 2( )2 2( ) 0 (( ) 0 (02 22 ( )(( ) 0( ) 0000( ) 0000( ) 0000

  (3.162) 
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Table 3-2: Baseline parameter values for the 2-degree-of-freedom system. 

Parameter Light Viscous 
Damping  

Heavy Viscous 
Damping 

Light Viscous 
Damping + Light 

Structural Damping 

m1 1.000 1.000 1.000 

m2 1.000 1.000 1.000 

k1 1000 1000 1000 

k2 1000 1000 1000 

η1 0.000 0.000 0.02000 

η2 0.000 0.000 0.01000 

cB 4.000 40.00 4.000 

cA 0.1000 1.000 0.1000 

 

which can be further simplified into matrix notation as 

 *( ) ( ) ( ) ( )M x t C x t K x t f tx t C x t( ) ( )) ( **( )   (3.163) 

where  

 1

2

( )
( )

( )
x t

x t
x t

( )x1(1( )1( )x1(
( )x(

( )2( )x2(( )(
  (3.164) 

 1

2

( )
( )

( )
x t

x t
x t

  (3.165) 

 
( )

( )
0

f t
f t   (3.166) 

 1

2

0
0

m
M

m
  (3.167) 

 1 1 2 1 2 2*

2 2 2 2

1 1 1
1 1

k j k j k j
K

k j k j
  (3.168) 
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0

0
A

B

c
C

c
  (3.169) 

The dynamic stiffness matrix is formed following Eq. (3.7) as 

1 1 2 1 2 2 12

2 2 2 2 2

1 1 1 0 0
( )

1 1 0 0
A

k k k
B

k j k j k j c m
Z j

k j k j c m
, 

 (3.170) 

and the full frequency response function matrix is found by inverting the dynamic 

stiffness, producing 

1
1 1 2 1 2 2 12

2 2 2 2 2

1 1 1 0 0
( )

1 1 0 0
A

k k k
B

k j k j k j c m
A j

k j k j c m
. 

 (3.171) 

The elements of ( )kA  correspond to the transfer functions between measurement 

degrees-of-freedom in the rows and forcing degrees-of-freedom in the columns (or vice 

versa since reciprocity will cause ( )kA  to be symmetric for linear systems); thus, the 

frequency response functions corresponding to forcing on the first degree-of-freedom can 

be found in the first column. For this small problem, the inverse in Eq. (3.171) can be 

expanded and the frequency response transfer functions for x1 and x2 corresponding to 

forcing at x1 written in closed form. To ease understanding of the resulting expressions, 

the following parameters are first introduced: 

 2

1

k
k

,  (3.172) 
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 i
i

i

k
m

 for i = 1, 2,  (3.173) 

 
2
1
2
2

,  (3.174) 

 2

1
,  (3.175) 

 
1 1

l
l

c
c

m k
 for l = A, B.  (3.176) 

The frequency response functions with all damping terms included can then be written as 

 

2

1
1 11

1,1
1

1
( )( )
( )

Bc
j

X
A

F k D
,  (3.177) 

and 

 2 1
2,1

1

( ) 1( )
( )

X j
A

F k D
,  (3.178) 

with 

 

2
1 1

1
2 4

1 1

1 1
1

2

1
1 1

11 ...

    ... 1 ...

1    ... 1 ...

    ...

A B

A B

A B

B
A

D c c

c c

j c c

c
c

3

.  (3.179) 
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for x1 and x2, respectively. The undamped frequency response functions can be found 

from these expressions by setting all damping parameters to zero, producing 

 

2

11
1,1 2 4

1
1 1

1
( )( )
( )

1 1

X
A

F
k

,  (3.180) 

and 

 2
2,1 2 4

1
1 1

( ) 1( )
( )

1 1

X
A

F
k

,  (3.181) 

Before addressing the damping cases, it is useful to calculate the undamped modal 

parameters for reference. Performing an eigenvalue analysis on the mass matrix and 

stiffness matrix with all damping parameters zero produces natural frequencies 

 1

2

19.54 rad/s (3.111 Hz) 
51.17 rad/s (8.143 Hz) 

  (3.182) 

and mass normalized mode shapes 

 
1

2

0.5257
0.8507

0.8507
0.5257

,
  (3.183) 

which are real-valued, as expected. 
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Inputting values from Table 3-2 for the light viscous damping case produces the 

following system matrices: 

 
1.000 0.000
0.000 1.000

M   (3.184) 

 * 2000 1000
1000 1000

K   (3.185) 

 
4.000 0.000
0.000 0.1000

C   (3.186) 

Performing a state-space eigenvalue analysis as described in Section 3.2 produces natural 

frequencies 

 1

2

19.56 rad/s (3.113 Hz) 
51.13 rad/s (8.138 Hz) ,

  (3.187) 

and mass normalized mode shapes 

 
1

2

0.5259 0.04695
0.8524 0.02897

0.8524 0.02897
0.5259 0.04695

j
j

j
j

.
  (3.188) 

The modes shapes have imaginary portions roughly an order of magnitude smaller than 

the real portion, indicating that the damping is non-proportional as desired. The real 

portion of the mode shapes is still quite similar to the undamped mode shapes. The modal 

damping ratios are calculated from the eigenvalues as  
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 1

2

0.03015
0.02856,

  (3.189) 

from which the damped natural frequencies are estimated via Eq. (3.46) to be  

 1

2

19.55 rad/s (3.111 Hz) 

51.11 rad/s (8.135 Hz) 

damped

damped
.
  (3.190) 

Frequency lines are required to compute the dynamic stiffness and frequency 

response function matrices. For the remainder of this study frequency dependent 

quantities are therefore be calculated at the frequency lines 16.71 rad/s (2.66 Hz) and 

52.09 rad/s (8.29 Hz), the values of which were chosen arbitrarily above and below the 

natural frequencies. The resulting dynamic stiffness and full frequency response function 

matrices are  

 

1721 66.85 1000
( 16.71)

1000 720.7 1.671

713.1 208.4 1000
( 52.09)

1000 1713 5.209

j
Z

j

j
Z

j
,
  (3.191) 

and 

 

3 4 3 4

3 4 3 3

3 3 3 3

3 3 3

2.875 10 6.048 10 3.987 10 8.485 10
( 16.71)

3.987 10 8.485 10 6.918 10 1.193 10

2.125 10 3.451 10 3.399 10 1.922 10
( 52.09)

1.234 10 2.018 10 1.301 10 1.1

j j
A

j j

j j
A

j 382 10 j

   

 (3.192) 
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respectively. The frequency response functions corresponding to forcing on x1 are the 

first column of each full matrix, producing  

 

3 4

3 4

3 3

3 3

2.875 10 6.048 10
( 16.71)

3.987 10 8.485 10

2.125 10 3.451 10
( 52.09)

1.234 10 2.018 10

j
a

j

j
a

j

.
  (3.193) 

The full spectrum frequency response functions are given in Figure 3-2, and it can be 

seen that the light viscous damping case has well defined peaks for both modes.  

For the heavy viscous damping case the system matrices are 

 
1.000 0.000
0.000 1.000

M   (3.194) 

 * 2000 1000
1000 1000

K   (3.195) 

 
40.00 0.000
0.000 1.000

C .  (3.196) 

The complex eigenvalue analysis produces natural frequencies 

 1

2

21.22 rad/s (3.377 Hz) 
47.13 rad/s (7.502 Hz) 

  (3.197) 

and mass normalized mode shapes 

 
1

2

0.8756 0.2244
0.6198 0.3170

0.6198 0.3170
0.8756 0.2244

j
j

j
j

.
  (3.198) 
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Figure 3-2: Frequency response functions for healthy 2-degree-of-freedom mass-spring system with 
light viscous damping. 
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The modal damping ratios are furthermore calculated as  

 1

2

0.3132
0.2939,

  (3.199) 

from which the damped natural frequencies are estimated via Eq. (3.46) to be  

 1

2

20.15 rad/s (3.207 Hz) 

45.05 rad/s (7.170 Hz) 

damped

damped
.
  (3.200) 

Comparing results between the heavy and light viscous damping cases shows that 

increasing the damping causes the first natural frequency to increase and the second to 

decrease. Also, the level of complexity in the mode shapes is much higher in the heavy 

damping case, with imaginary components on the same order as the real components and 

the real components now substantially different from the undamped shapes. The dynamic 

stiffness and full frequency response function matrices for the heavy viscous damping 

case are  

 

1721 668.5 1000
( 16.71)

1000 720.7 16.71

713.1 2084 1000
( 52.09)

1000 1713 52.09

j
Z

j

j
Z

j
,
  (3.201) 

and 
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4 3 4 3

4 3 3 3

5 4 6 4

6 4 4

5.541 10 1.163 10 7.311 10 1.631 10
( 16.71)

7.311 10 1.631 10 2.348 10 2.318 10

2.931 10 4.741 10 8.689 10 2.770 10
( 52.09)

8.689 10 2.770 10 5.834 10 1.7

j j
A

j j

j j
A

j 494 10 j

, 

 (3.202) 

respectively. The full spectrum frequency response functions are given in Figure 3-3. It 

can be seen that the heavy damping causes much larger imaginary components in the 

frequency response functions than the light damping case, as well as substantial blurring 

of modal peaks and coupling between the modes. 

The system matrices for the case of combined light viscous damping and light 

structural damping produces system matrices  

 
1.000 0.000
0.000 1.000

M   (3.203) 

 * 2000 20.00 1000 10.00
1000 10.00 1000 10.00

j j
K

j j
  (3.204) 

 
4.000 0.000
0.000 0.1000

C .  (3.205) 

It can be seen that the stiffness matrix is now complex. Closed form calculation of natural 

frequencies, mode shapes, and modal damping ratios for the combined damping system is 

not possible based on the methods described in Section 3.2 and although methods are 

available for this analysis, for example as described in reference [3-15], they are beyond  
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Figure 3-3: Frequency response functions for healthy 2-degree-of-freedom mass-spring system with 
heavy viscous damping. 
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the scope of this dissertation. The approximate undamped natural frequencies and mode 

shapes can be calculated by assuming zero damping, however, with the same result as 

presented in Eqs. (3.182) and (3.183). The dynamic stiffness and frequency response 

function matrices can still be calculated without restriction as  

 

1721 96.85 1000 10
( 16.71)

1000 10 720.7 11.67

713.1 238.4 1000 10
( 52.09)

1000 10 1713 15.21

j j
Z

j j

j j
Z

j j

  (3.206) 

 

3 4 3 3

3 3 3 3

3 3 4 3

4 3 3

2.729 10 7.672 10 3.866 10 1.088 10
( 16.71)

3.866 10 1.088 10 6.741 10 1.566 10

1.582 10 3.115 10 8.889 10 1.836 10
( 52.09)

8.889 10 1.836 10 1.082 10 1.0

j j
a

j j

j j
a

j 386 10 j

. 

 (3.207) 

The full spectrum frequency response functions for this case are given in Figure 3-4. It 

should be noted that the damped modal information could be estimated using transfer 

function curve-fitting techniques with these full-spectrum frequency response functions 

as is commonly performed during experimental modal parameter estimation on measured 

data.  

Frequency response functions for the three damping cases are plotted together in 

Figure 3-5 and Figure 3-6 for x1 and x2 respectively. It can be seen that the light viscous 

plus light structural damping cases produces effective damping between the other cases. 
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Figure 3-4: Frequency response functions for healthy 2-degree-of-freedom mass-spring system with 
light viscous plus light structural damping. 
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Figure 3-5: Comparison of healthy frequency response functions for three damping cases, x1. 
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Figure 3-6: Comparison of healthy frequency response functions for three damping cases, x2. 
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3.8.2 Damaged System Description 

In order to simulate damage, a small decrease in mass and larger decrease in 

stiffness are introduced into the system for each damping case. Additionally, for the 

combined viscous and structural damping case one structural damping parameter is 

increased to simulate increased friction in the damage zone and then for a subsequent 

case decreased to simulate gapping. Exact parameters for the resulting four damage cases 

are given in Table 3-3, where the subscript ‘d’ on each parameter indicates a damaged 

value.   

 

 

 

Table 3-3: Damaged parameter values for the 2-degree-of-freedom system. 

Parameter Light Viscous 
Damping  

Heavy Viscous 
Damping 

Light Viscous Plus 
Light Structural 

Damping, Damping 
Increase 

Light Viscous Plus 
Light Structural 

Damping, Damping 
Decrease 

m1,d 1.000 1.000 1.000 1.000 

m2,d 0.990 (-1%) 0.990 (-1%) 0.990 (-1%) 0.990 (-1%) 

k1,d 900.0 (-10%) 900.0 (-10%) 900.0 (-10%) 900.0 (-10%) 

k2,d 1000 1000 1000 1000 

η1,d 0.000 0.000 0.024 (+20%) 0.016 (-20%) 

η2,d 0.000 0.000 0.010 0.010 

cA,d 4.000 40.00 4.000 4.000 

cB,d 0.1000 1.000 0.1000 0.1000 
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For each case, damaged reference data, such as would be measured from the 

damage structure in practice, is created using Eq. (3.171) with only the first column of the 

full frequency response function matrix retained at each frequency to simulate forcing on 

the first degree-of-freedom. It should be noted that although acceleration or velocity 

would most easily be measured on a physical structure the frequency response functions 

generated for the purpose of the current example are displacement-based. However, 

acceleration or velocity measurements could be converted to the displacement domain 

through division by the kj  or 2
k , respectively, at each frequency line so the 

distinction is a formality. The damaged reference frequency response functions for each 

case are given below in Figure 3-7 to Figure 3-14 with the healthy frequency response 

function given in each case for comparison.  

The frequency response functions evaluated at the two previously specified 

analysis frequency lines are as follows. 

 

Light Viscous Damping Case: 

 

3 3

3 3

3 3

3 3

3.896 10 1.157 10
( 16.71)

5.402 10 1.618 10

2.378 10 2.470 10
( 52.09)

1.384 10 1.446 10

j
a

j

j
a

j

.
  (3.208) 
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Figure 3-7: Full-spectrum damaged and healthy frequency response functions for the light viscous 
damping case, x1. 
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Figure 3-8: Full-spectrum damaged and healthy frequency response functions for the light viscous 
damping case, x2. 
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Figure 3-9: Full-spectrum damaged and healthy frequency response functions for the heavy viscous 
damping case, x1. 
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Figure 3-10: Full-spectrum damaged and healthy frequency response functions for the heavy viscous 
damping case, x2. 

1 2 3 4 5 6 7 8 9 10 11

-1.5

-1

-0.5

0

0.5

1

1.5

x 10
-3 Damaged Frequency Response Function for x2

R
ea

l

Frequency (Hz)

 

 

Healthy
Damaged
Analysis Frequency Lines

1 2 3 4 5 6 7 8 9 10 11

-20

-15

-10

-5

0

5

x 10
-4 Damaged Frequency Response Function for x2

Im
ag

in
ar

y

Frequency (Hz)

 

 

Healthy
Damaged
Analysis Frequency Lines



www.manaraa.com

127 

 

 

Figure 3-11: Full-spectrum damaged and healthy frequency response functions for the light viscous 
plus light structural damping with increased structural damping case, x1. 
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Figure 3-12: Full-spectrum damaged and healthy frequency response functions for the light viscous 
plus light structural damping with increased structural damping case, x2. 
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Figure 3-13: Full-spectrum damaged and healthy frequency response functions for the light viscous 
plus light structural damping with decreased structural damping case, x1. 
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Figure 3-14: Full-spectrum damaged and healthy frequency response functions for the light viscous 
plus light structural damping with decreased structural damping case, x2. 
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Heavy Viscous Damping Case: 

 

4 3

4 3

5 4

5 4

4.366 10 1.279 10
( 16.71)

5.623 10 1.780 10

4.938 10 4.706 10
( 52.09)

2.065 10 2.798 10

j
a

j

j
a

j

.
  (3.209) 

Light Viscous plus Light Structural Damping with Increased Damping Case: 

 

3 3

3 3

3 3

3 3

3.639 10 1.421 10
( 16.71)

5.017 10 1.994 10

1.921 10 2.244 10
( 52.09)

1.114 10 1.352 10

j
a

j

j
a

j

.
  (3.210) 

Light Viscous plus Light Structural Damping with Decreased Damping Case: 

 

3 3

3 3

3 3

3 3

3.712 10 1.337 10
( 16.71)

5.118 10 1.879 10

1.984 10 2.253 10
( 52.09)

1.151 10 1.358 10

j
a

j

j
a

j

.
  (3.211) 

For all four damping cases the change in natural frequency from damage is related 

only to the changes in mass and stiffness, plus a small amount of damping based scaling. 

The damaged light viscous damping case produces the following modal parameters. 

Natural frequencies: 

 1,

2,

18.88 rad/s (3.005 Hz) 

50.50 rad/s (8.038 Hz) 
d

d
  (3.212) 



www.manaraa.com

132 

 

Mass normalized mode shapes: 

 
1,

2,

0.5458 0.04870
0.8441 0.03180

.8400 0.03165
0.5486 0.04894

d

d

j
j

j
j

  (3.213) 

Modal damping ratios: 

 1,

2,

0.03344

0.02810
d

d
  (3.214) 

Damped natural frequencies: 

 1,

2,

18.87 rad/s (3.003 Hz) 

50.48 rad/s (8.035 Hz) 

damped
d

damped
d

  (3.215) 

The damage causes natural frequency changes of -3.465% and -1.231% for mode 1 and 

mode 2, respectively, and corresponding mode shape changes of 

 
1 1

2 2

3.797% 3.723%
Re ,  Im

0.9643% 9.808%

1.461% 9.257%
Re ,      Im

4.320% 4.246%
,
  (3.216) 

where the percentage change has been calculated separately on the real and imaginary 

components of the mode shapes.  

The damaged heavy viscous damping case produces the following modal 

parameters. 

Natural frequencies: 
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 1,

2,

20.60 rad/s (3.279 Hz) 

46.28 rad/s (7.365 Hz) 
d

d
  (3.217) 

Mass normalized mode shapes: 

 
1,

2,

0.8976 0.1984
0.5772 0.3116

0.5743 0.3101
0.9021 0.1994

d

d

j
j

j
j

  (3.218) 

Modal damping ratios: 

 1,

2,

0.3521

0.2863
d

d
  (3.219) 

Damped natural frequencies: 

 1,

2,

19.28 rad/s (3.069 Hz) 

44.34 rad/s (7.057 Hz) 

damped
d

damped
d

  (3.220) 

The damage for this case causes natural frequency changes of −2.886% and −1.820% for 

mode 1 and mode 2, respectively, and mode shape changes of 

 
1 1

2 2

2.510% 11.60%
Re ,  Im

6.876% 1.708%

7.343% 2.201%
Re ,    Im

3.027% 11.16%
,
  (3.221) 

When damping is ignored and modal parameters are calculated from the mass and 

stiffness matrices only, natural frequencies for all four damage cases are 



www.manaraa.com

134 

 

 1,

2,

18.87 rad/s (3.003 Hz) 

50.54 rad/s (8.044 Hz) 

undamped
d

undamped
d

,  (3.222) 

with corresponding mass normalized mode shapes  

 
1,

2,

0.5455
0.8423

0.8381
0.5483

undamped
d

undamped
d

.
  (3.223) 

Viewed in this respect, the damage causes natural frequency changes of −3.469% and 

−1.227% for mode 1 and mode 2, respectively, and mode shape changes of 

 
1

2

3.764%
0.9792%

1.476%
4.286%

,
  (3.224) 

On average, the damage cases can therefore be thought of as producing a 3.8% decrease 

in ω1, 1.2% decrease in ω2, and 2.6% net change in mode shapes compared to the healthy 

systems. 

3.8.3 Damage Identification Walk-Through and Results 

Basic functionality of the damage identification algorithm is now demonstrated on 

the damped mass-spring system. In order to clearly illustrate the algorithm mechanics, a 

step-by-step walk-through is presented first using the light viscous damping case, with 

results of the remaining cases presented directly for comparison. It is assumed for this 
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example that the generalized damping matrix is known. Only mass and stiffness 

parameters are included as damage parameters for the light and heavy viscous damping 

cases, with the structural damping parameters included for the final two cases where the 

values are not zero, as summarized in Table 3-4.  

Additional algorithm variables are as follows:  

 Assumed initial parameter standard deviation equal to 10% of initial values. 

 Assumed reference data standard deviation equal to 0.01% of mean-square 

average of analysis frequency response function lines. 

 Convergence tolerance equal to 0.01% of mean of initial damage parameters 

(equal to 0.0501 for the current case).  

 

Table 3-4: Update parameter selection for damage identification runs on 2-degree-of-freedom 
damped mass-spring system. 

Parameter Light Viscous 
Damping  

Heavy Viscous 
Damping 

Light Viscous 
Damping + Light 

Structural Damping, 
Damping Increase 

Light Viscous 
Damping + Light 

Structural Damping, 
Damping Decrease 

m1 r1 r1 r1 r1 

m2 r2 r2 r2 r2 

k1 r3 r3 r3 r3 

k2 r4 r4 r4 r4 

η1 N/A N/A r5 r5 

η2 N/A N/A r6 r6 

cA N/A N/A N/A N/A 

cB N/A N/A N/A N/A 
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Dynamic stiffness matrix sensitivities are calculated in closed form for this 

example by first writing the dynamic stiffness matrix with subscript ‘i’ on parameters to 

indicate their current value at iteration i, 

1, 1, 2, 1, 2, 2, 1,2

2,2, 2, 2, 2,

1 1 1 00
( )

001 1

i i i i i i iA
k k ki

iBi i i i

k j k j k j mc
Z j

mck j k j
. 

 (3.225) 

The required sensitivities are then calculated as the partial derivative with respect to each 

parameter. The resulting sensitivity expressions are 

 
2

1

( ) 0
0 0

k k

i

Z
m

,  (3.226) 

 2
2

0 0( )
0

k

ki

Z
m

,  (3.227) 

 1,

1

1 0( )
0 0

ik

i

jZ
k

,  (3.228) 

 
2, 2,

2 2, 2,

1 1( )
1 1

i ik

i i i

j jZ
k j j

,  (3.229) 

 1,

1

0( )
0 0

ik

i

jkZ ,  (3.230) 

 2, 2,

2, 2,2

( ) i ik

i ii

jk jkZ
jk jk

.  (3.231) 

 
0( )

0 0
kk

A i

jZ
c

.  (3.232) 
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0 0( )
0

k

kB i

Z
jc

.  (3.233) 

The step-by-step damage identification algorithm walk-through is presented in the 

same bulleted list format as was used for the algorithm summary in Section 3.7 for the 

light viscous damping case. Results from the remaining damage cases are then presented 

without step-by-step walk-throughs since the process is identical for each case. Note that 

for this example the iteration indexing starts at i = 0; however, the iterations could 

equivalently start at i = 1 with parameter indexing adjusted accordingly to ensure correct 

algorithm flow. Additionally, because of the small problem size it is assumed that 

reference data is available from both degrees-of-freedom with no reduction required. 

 

Light Viscous Damping Case: 

Damage Identification Algorithm Inputs:  

 Damage parameters at initial healthy values:  

0

1.000
1.000
1000
1000

r  
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 Initial damage parameter covariance matrix: 

0 0

0.01 0 0 0
0 0.01 0 0
0 0 10 0
0 0 0 10

r rS  

 Analytical model evaluated at initial damage parameter values:  

 0
1.000 0.000
0.000 1.000

M   

 *
0

2000 1000
1000 1000

K   

 0
4.000 0.000
0.000 0.1000

C   

 Analysis frequency lines: 

16.71
52.09

rad
k s  
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 Experimental reference data from the damaged structure, batch-stacked 

over analysis frequency line set:  

-3

-3

-3

-3

-3

-3

-3

-3

3.896 10

5.402 10

1.157 10

1.618 10

2.378 10

1.384 10

2.470 10

1.446 10

aa
1.61.61.6

2 3
 

 Experimental reference data covariance matrix, batch-stacked over 

analysis frequency line set:  

13

1.028 0 0 0 0 0 0 0
0 1.521 0 0 0 0 0 0
0 0 0.3221 0 0 0 0 0
0 0 0 0.2161 0 0 0 0

10
0 0 0 0 1.028 0 0 0
0 0 0 0 0 1.521 0 0
0 0 0 0 0 0 0.3221 0
0 0 0 0 0 0 0 0.2161

vvS  
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Iteration 1 (i = 0): 

1. Dynamic stiffness matrix at 0r  using Eq. (3.7): 

 
0

0

1721 66.85 1000
( 16.71)

1000 720.7 1.671

713.1 208.4 1000
( 52.09)

1000 1713 5.209

j
Z

j

j
Z

j

  

2. Assemble batch-stacked dynamic stiffness matrix over all frequency lines: 

0

1721 1000 66.85 0 0 0 0 0
1000 720.7 0 1.671 0 0 0 0

66.85 0 1721 1000 0 0 0 0
0 1.671 1000 720.7 0 0 0 0
0 0 0 0 713.1 1000 208.4 0
0 0 0 0 1000 1713 0 5.209
0 0 0 0 208.4 0 713.1 1000
0 0 0 0 0 5.209 1000 1713

Z  

3. Create batch-stacked residual force vector using Eq. (3.103): 

 
0

0.3861
0.01490
0.1134

0.004413
0.2376
0.03813
0.2270
0.03665

R   
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4. Create batch-stacked residual force covariance matrix using Eq. (3.104): 

0

4565 2864 81.16 18.99 0 0 0 0
2864 1817 68.34 1.571 0 0 0 0
81.16 68.34 1174 709.9 0 0 0 0
18.99 1.571 709.9 434.3 0 0 0 0

0 0 0 0 2057 3338 104.8 59.18
0 0 0 0 3338 5491 213.0 11.64
0 0 0 0 104.8 213.0 424.5 599.8
0 0 0 0 59.18 11.64 599.8 956.2

RRS 1010   

5. Generate batch-stacked dynamic stiffness sensitivity matrix for each 

damage parameter using the closed form expressions in Eqs. (3.226) to 

(3.229): 

1 0

279.3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 2713 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 279.3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2713 0
0 0 0 0 0 0 0 0

Z
r

 

2 0

0 0 0 0 0 0 0 0
0 279.3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2713 0 0 0 0

ˆ 0 0 0 0 0 0 0 0
0 0 0 0 0 279.3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2713

Z
r
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3 0

1000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1000 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 1000 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1000 0
0 0 0 0 0 0 0 0

Z
r

 

4 0

1000 1000 0 0 0 0 0 0
1000 1000 0 0 0 0 0 0
0 0 1000 1000 0 0 0 0
0 0 1000 1000 0 0 0 0

ˆ 0 0 0 0 1000 1000 0 0
0 0 0 0 1000 1000 0 0
0 0 0 0 0 0 1000 1000
0 0 0 0 0 0 1000 1000

Z
r

 

6. Generate the batch-stacked residual force sensitivity matrix using Eq. 

(3.115) with parameter contributions corresponding to columns of the final 

matrix: 

 0

1.078 0 3.861 1.472
0 1.490 0 1.472

0.3168 0 1.342 0.4458
0 0.4413 0 .4458

6.448 0 2.376 3.782
0 3.813 0 3.782

6.160 0 2.270 3.621
0 3.665 0 3.621

N   
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7. Generate the quantity 1iQ  using Eq. (3.122): 

 

5 5 2 2

5 4 2

1 2 2

2

7.826 10 9.449 10 5.282 10 1.094 10

9.449 10 1.141 10 6.377 10 1.164

5.282 10 6.377 10 35.65 65.08

9.643 10 1.164 65.08 118.8

Q   

8. Generate the updated damage parameter set using Eq. (3.121): 

 1

1.001
0.9908

ˆ
900.5
1001

r   

9. Generate the absolute value damage parameter difference mean: 

1

1.001 0.9900
0.9908 1.000

ˆ 25.09
900.5 900.0
1001 1000

r mean  

10. Check for parameter convergence: 

1ˆ 25.09 0.0501r  

Decision: Convergence not achieved, increment i and continue. 
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Iteration 2 (i = 1): 

1. Dynamic stiffness matrix at 1r  using Eq. (3.7): 

 
1

1

1622 66.85 1001
( 16.71)

1001 724.1 1.671

813.6 208.4 1001
( 52.09)

1001 1687 5.209

j
Z

j

j
Z

j

  

2. Assemble batch-stacked dynamic stiffness matrix over all frequency lines: 

1

1622 1001 66.85 0 0 0 0 0
1001 724.1 0 1.671 0 0 0 0

66.85 0 1622 1001 0 0 0 0
0 1.671 1001 724.1 0 0 0 0
0 0 0 0 813.6 1001 208.4 0
0 0 0 0 1001 1687 0 5.209
0 0 0 0 208.4 0 813.6 1001
0 0 0 0 0 5.209 1001 1687

Z  

3. Create batch-stacked residual force vector using Eq. (3.103): 

 

6

6

5

6

1 6

6

6

6

2.439 10

2.044 10

1.053 10

7.533 10

4.180 10

6.349 10

2.999 10

5.721 10

R   
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4. Create batch-stacked residual force covariance matrix using Eq. (3.104): 

1

4228 2770 76.50 19.01 0 0 0 0
2770 1827 68.40 1.579 0 0 0 0
76.50 68.40 1068 679.4 0 0 0 0
19.01 1.579 679.4 435.9 0 0 0 0

0 0 0 0 2218 3405 119.6 59.23
0 0 0 0 3405 5359 213.2 11.47
0 0 0 0 119.6 213.2 474.2 627.2
0 0 0 0 59.23 11.47 627.2 937.9

RRS 1010   

5. Generate batch-stacked dynamic stiffness sensitivity matrix for each 

damage parameter using the closed form expressions in Eqs. (3.226) to 

(3.229): 

1 1

279.3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 2713 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 279.3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2713 0
0 0 0 0 0 0 0 0

Z
r

 

2 1

0 0 0 0 0 0 0 0
0 279.3 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2713 0 0 0 0

ˆ 0 0 0 0 0 0 0 0
0 0 0 0 0 279.3 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2713

Z
r
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3 1

1000 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1000 0 0 0 0 0
0 0 0 0 0 0 0 0

ˆ 0 0 0 0 1000 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1000 0
0 0 0 0 0 0 0 0

Z
r

 

4 1

1000 1000 0 0 0 0 0 0
1000 1000 0 0 0 0 0 0
0 0 1000 1000 0 0 0 0
0 0 1000 1000 0 0 0 0

ˆ 0 0 0 0 1000 1000 0 0
0 0 0 0 1000 1000 0 0
0 0 0 0 0 0 1000 1000
0 0 0 0 0 0 1000 1000

Z
r

 

6. Generate batch-stacked residual force sensitivity matrix using Eq. (3.115) 

with parameter contributions corresponding to columns of the final matrix: 

 1

1.078 0 3.861 1.472
0 1.490 0 1.472

0.3168 0 1.342 0.4458
0 0.4413 0 .4458

6.448 0 2.376 3.782
0 3.813 0 3.782

6.160 0 2.270 3.621
0 3.665 0 3.621

N   
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7. Generate the quantity 1iQ  using Eq. (3.122): 

 

5 5 5 5

5 4 5 4

2 5 5 5 5

5 4 5 4

7.932 10 9.671 10 5.950 10 9.771 10

9.671 10 1.179 10 7.255 10 1.191 10

5.950 10 7.255 10 4.464 10 7.330 10

9.771 10 1.191 10 7.330 10 1.204 10

Q   

8. Generate the updated damage parameter set using Eq. (3.121): 

 2

1.001
0.9908

ˆ
900.5
1001

r   

9. Generate the absolute value damage parameter difference mean: 

3
2

1.001 1.001
0.9908 0.9908

ˆ 5.122 10
900.5 900.5
1001 1001

r mean  

10. Check for parameter convergence: 

3
1ˆ 5.122 10 0.0501r  

Decision: Convergence achieved, break loop. 

Converged algorithm outputs: 

 Iterations to convergence = 2 
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 Updated damage parameter values:  

1

2

1

2

ˆ 1.001
ˆ 0.9908

ˆ ˆ 900.5
ˆ 1001

d

m

m
r

k

k

 

 Updated damage parameter standard deviation values in terms of real units 

and percentage of original values:  

3

2
ˆ

8.906 10 8.9%
11%1.081 10

0.20%2.004
0.35%3.470

dr , 

 Damage correlated analytical model:  

0.9908 0.000
ˆ( )

0.000 1.001dM r  

* 1901 1001
ˆ( )

1001 1001dK r  

4.000 0.000
ˆ( )

0.000 0.1000dC r  

 Updated parameter error compared to the known solution:  

0.069%
ˆ 0.085%

0.058%
0.085%

d d

d

r r

r

ˆd dr rd d

drd
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The correct damage parameter values are reached with low error in a single 

iteration, with a second iteration required to verify convergence. Additionally, the update 

results in an average of 50% reduction in uncertainty of all four damage parameter values 

based on the initial assumptions on parameter and reference data variability.  

Repeating the damage identification for the remaining damage cases produces 

results as follows. 

 

Heavy Viscous Damping Case: 

Converged algorithm outputs: 

 Iterations to convergence = 2 

 Updated damage parameter values:  

1

2

1

2

ˆ 1.000
ˆ 0.9900

ˆ ˆ 900.0
ˆ 1000

d

m

m
r

k

k

 

 Updated damage parameter standard deviation values in terms of real units 

and percentage of original values:  

3

3

ˆ 2

2

1.211 10 1.2%
1.398 10 1.4%

0.026%2.648 10
0.046%4.632 10

dr . 
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 Damage correlated analytical model:  

0.9900 0.000
ˆ( )

0.000 1.000dM r  

* 1900 1000
ˆ( )

1000 1000dK r  

40.00 0.000
ˆ( )

0.000 1.000dC r  

 Updated parameter error compared to the known solution:  

0.0012%
ˆ 0.0015%

0.0010%
0.0015%

d d

d

r r

r

ˆd dr rd d

drd
. 

 

Light Viscous plus Light Structural Damping with Increased Damping Case: 

Converged algorithm outputs: 

 Iterations to convergence = 3 

 Updated damage parameter values:  

1

2

1

2

1

2

ˆ 1.001
ˆ 0.9909
ˆ 900.6

ˆ
ˆ 1001

0.02399ˆ
0.009991ˆ

d

m

m

k
r

k
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 Updated damage parameter standard deviation values in terms of real units 

and percentage of original values:  

3

3

ˆ

4

4

5.328 10 5.3%
6.433 10 6.4%

0.1195 0.12%
0.2073 0.21%

38%7.635 10
66%6.639 10

dr . 

 Damage correlated analytical model:  

1.001 0.000
ˆ( )

0.000 0.9909dM r  

* 1902 31.60 1001 10.00
ˆ( )

1001 10.00 1001 10.00d
j j

K r
j j

 

4.000 0.000
ˆ( )

0.000 0.1000dC r  

 Updated parameter error compared to the known solution:  

0.077%
0.094%

ˆ 0.064%
0.095%

0.059%
0.094%

d d

d

r r

r

ˆd dr rd d

drd
. 
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Light Viscous plus Light Structural Damping with Decreased Damping Case: 

Converged algorithm outputs: 

 Iterations to convergence = 3 

 Updated damage parameter values:  

1

2

1

2

1

2

ˆ 0.9999
ˆ 0.9899
ˆ 899.9

ˆ
ˆ 999.9

0.01600ˆ
0.01000ˆ

d

m

m

k
r

k
 

 Updated damage parameter standard deviation values in terms of real units 

and percentage of original values:  

3

3

ˆ

4

4

5.178 10 5.2%
6.249 10 6.2%

0.1160 0.12%
0.2015 0.20%

19%3.889 10
65%6.476 10

dr . 

 Damage correlated analytical model:  

0.9999 0.000
ˆ( )

0.000 0.9899dM r  

* 1900 24.40 999.9 10.00
ˆ( )

999.9 10.00 999.9 10.00d
j j

K r
j j
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4.000 0.000
ˆ( )

0.000 0.1000dC r  

 Updated parameter error compared to the known solution:  

0.0082%
0.010%

ˆ 0.0068%
0.010%
0.0065%
0.0097%

d d

d

r r

r

ˆd dr rd d

drd
. 

Comparing the results shows successful damage identification for all damage and 

damping cases, with parameter errors ranging in magnitude from 0.0010% to 0.085%. 

The non-zero error is primarily a result of the regularization produced by the non-zero 

ratio of reference data variability to initial parameter variability. If the assumed reference 

data standard deviation is decreased by a factor of 100 for the light viscous plus light 

structural damping with increased damping case, the updated parameter error can be seen 

to decrease by a factor of 1002 to 

0.0000078%
0.0000096%

ˆ 0.0000065%
0.0000096%

0.0000061%
0.0000096%

d d

d

r r

r

ˆd dr rd d

drd
. 
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For an idealized analytical case such as the current 2-degree-of-freedom mass spring 

system this trend will continue until machine noise leads to instability from ill-

conditioning during inversion of the residual force covariance matrix. 

3.8.4 Approximate Modeling of Generalized Viscous Damping 

In the above example it is assumed that the true generalized damping matrix is 

known; however, for physical structures this is usually not the case. Whereas mass and 

stiffness matrices can be accurately assigned based on knowledge of the structure 

geometry and materials, the damping matrix will be more sensitive to loading, operating 

regime, environment, and properties that cannot be easily measured such as friction in 

structural joints. Sophisticated methods exist for identifying generalized damping 

matrices (e.g. as presented in reference [3-15]), but for many structures simple 

proportional damping approximations may offer acceptable accuracy for frequency 

response function based damage identification.  

As discussed in Section 3.2, Rayleigh damping creates a viscous damping matrix 

proportional to the global mass matrix, global stiffness matrix, or a summation of both. 

The proportionality constants are selected to match selected modal damping ratios. To 

reiterate from Section 3.2, the basic Rayleigh equations are 

 C K M , (3.28) 

and  
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 1
2n n

n
, (3.30) 

and proportionality constants α and β are solved for given values of n  and n . For 

damping proportional to only the stiffness matrix the constants equal 

 ,

,

2

0

n
K n

n

K n

  (3.234) 

where n refers to a single mode that must be selected to be matched. The corresponding 

viscous damping matrix is equal to 

 ,
2 n

K n
n

C K .  (3.235) 

For damping proportional to only the mass matrix and also referencing a single mode n 

the constants equal  

 ,

,

0

2
M n

M n n n
.  (3.236) 

The corresponding viscous damping matrix for this case is equal to 

 , 2M n n nC M .  (3.237) 

For damping proportional to a combination of both the mass and stiffness matrices, Eq. 

(3.30) can be written once for each of two modes, m and n, and solved simultaneously to 

produce α and β as 
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 2 2
2 m n m n

Rayleigh
n mm n

  (3.238) 

 2 2
2 m n

Rayleigh m n n m
m n

.  (3.239) 

The viscous damping matrix is then equal to  

 2 2
2 m n m n

Rayleigh m n n m
n mm n

C K M .  (3.240) 

To study the accuracy of using proportional approximations for generalized 

damping the light viscous damping case was modeled using stiffness proportional 

damping based on mode 1 (denoted ‘K,1’), stiffness proportional damping based on mode 

2 (denoted ‘K,2’), mass proportional damping based on mode 1 (denoted ‘M,1’), mass 

matrix proportional damping based on mode 2 (denoted ‘M,2’), and full stiffness and 

mass proportional Rayleigh damping based on modes 1 and 2 (denoted ‘Rayleigh’). 

Results with proportionality factors, viscous damping matrices, modal damping ratios and 

damped natural frequencies are presented alongside the correct generalized damping 

results (denoted ‘Correct’) as follows:  

 Correct generalized damping: 1)

 
4.000 0.000
0.000 0.1000CorrectC   (3.241) 

 
1

2

0.4077

0.09750
Correct

Correct .
  (3.242) 
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1

2

19.55 rad/s (3.111 Hz) 

51.11 rad/s (8.135 Hz) 

damped

Correct

damped

Correct
.
  (3.243) 

 Stiffness proportional damping based on mode 1: 2)

 ,1

,1

0.003083

0
K

K
  (3.244) 

 ,1
6.166 3.083
3.083 3.083KC   (3.245) 

 
1 ,1

2 ,1

0.03015

0.02856
K

K .
  (3.246) 

 
1 ,1

2 ,1

19.54 rad/s (3.109 Hz) 

51.01 rad/s (8.118 Hz) 

damped

K

damped

K
.
  (3.247) 

 Stiffness proportional damping based on mode 2: 3)

 ,2

,2

0.001117

0
K

K
  (3.248) 

 ,2
2.234 1.117
1.117 1.117KC   (3.249) 

 
1 ,2

2 ,2

0.01092

0.02858
K

K .
  (3.250) 

 
1 ,2

2 ,2

19.54 rad/s (3.110 Hz) 

51.15 rad/s (8.140 Hz) 

damped

K

damped

K
.
  (3.251) 
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 Mass proportional damping based on mode 1: 4)

 ,1

,1

0

1.179
M

M
  (3.252) 

 ,1
1.179 0.000
0.000 1.179MC   (3.253) 

 
1 ,1

2 ,1

0.03017

0.01152
M

M .
  (3.254) 

 
1 ,1

2 ,1

19.54 rad/s (3.109 Hz) 

51.16 rad/s (8.143 Hz) 

damped

M

damped

M
.
  (3.255) 

 Mass proportional damping based on mode 2: 5)

 ,2

,2

0

2.921
M

M
  (3.256) 

 ,2
2.921 0.000
0.000 2.921MC   (3.257) 

 
1 ,2

2 ,2

0.07473

0.02854
M

M .
  (3.258) 

 
1 ,2

2 ,2

19.49 rad/s (3.102 Hz) 

51.15 rad/s (8.140 Hz) 

damped

M

damped

M
.
  (3.259) 

 Rayleigh damping based on modes 1 and 2: 6)

 
0.0007804

0.8807
Rayleigh

Rayleigh
  (3.260) 
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2.441 0.7804
0.7804 1.661RayleighC   (3.261) 

 
1

2

0.03016

0.02857
Rayleigh

Rayleigh .
  (3.262) 

 
1

2

19.54 rad/s (3.109 Hz) 

51.15 rad/s (8.140 Hz) 

damped

Rayleigh

damped

Rayleigh
.
  (3.263) 

The modal damping ratios produced by the proportional damping approximations 

are summarized in Figure 3-15 and a comparison of the frequency response functions 

resulting from using each method are given in terms of real and imaginary components in 

Figure 3-16 and Figure 3-17 and in terms of magnitude and phase in Figure 3-18 and 

Figure 3-19. 

Several conclusions can be drawn from these results. Firstly, all of the methods do 

a good job of modeling the damping ratios for the modes that they are based on. For the 

single mode methods, the mass-only cases produce reasonable values for the modes that 

were not modeled compared to the stiffness-only cases which diverge significantly, 

producing modal damping ratios off by an order of magnitude. Secondly, both the mass-

only and stiffness-only methods show noticeable frequency response function error away 

from the range of the matched mode. Finally, the Rayleigh damping case with both 

stiffness and mass proportionality fares the best overall—as expected because of the 

ability to fit both modes—producing low modal damping ratio error and a reasonable 

approximation of the frequency response functions around both natural frequencies. 
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However, there is noticeable frequency response function error away from the peaks. It 

should be noted that this generalized damping case is severely non-proportional and so 

these results are reasonable overall.  

 

 

 

 

Figure 3-15: Summary of modal damping ratios produced by approximate proportional damping 
methods compared to the correct values from the generalized damping matrix. 
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Figure 3-16: Comparison of frequency response functions produced by different approximate 
proportional damping methods and the correct generalized damping matrix, x1 (real and imaginary). 
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Figure 3-17: Comparison of frequency response functions produced by different approximate 
proportional damping methods and the correct generalized damping matrix, x2 (real and imaginary). 
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Figure 3-18: Comparison of frequency response functions produced by different approximate 
proportional damping methods and the correct generalized damping matrix, x1 (magnitude and 
phase). 
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Figure 3-19: Comparison of frequency response functions produced by different approximate 
proportional damping methods and the correct generalized damping matrix, x2 (magnitude and 
phase). 
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As a final check on the efficacy of using proportional damping to approximate 

generalized damping, damage identification is run using the heavy viscous damping 

damage case with Rayleigh damping. To simulate a physical situation, the reference 

frequency response function data from the damaged system are created using the true 

generalized damping matrix but only the mass matrix, stiffness matrix, natural 

frequencies, mode shapes, and damping ratios are considered known for the analytical 

system. The Rayleigh damping approximation is then formulated and implemented 

within the analytical system in place of the true generalized damping matrix to create the 

analytical dynamic stiffness matrix at each iteration.  

For the first damage identification run, all algorithm parameters are set equal to 

their values from the light viscous damping case in Section 3.8.3, including the use of  

2N  analysis frequency lines at 16.71 rad/s (2.66 Hz) and 52.09 rad/s (8.29 Hz). The 

damage identification algorithm fails to converge in this case, oscillating around two 

extreme points until the iterations time out.  

However, if the damage identification is performed using 10N  frequency 

lines distributed evenly over the frequency domain (0.1 Hz to 12.0 Hz) and all other 

parameters unchanged convergence is reached after 3 iterations with the results 
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 Updated damage parameter values:  

1

2

1

2

ˆ 0.9926
ˆ 0.9909

ˆ ˆ 899.9
ˆ 992.8

d

m

m
r

k

k

 

 Updated parameter error compared to the known solution:  

0.74%
ˆ 0.087%

0.014%
0.72%

d d

d

r r

r

ˆd dr rd d

drd
. 

These results include non-negligible error, especially in the two undamaged 

parameters included in the update. However, it can be seen that the general form of the 

damaged system is captured well even in the face of initial frequency response function 

error from the approximate damping model. The improvement from the initial 2N  

case occurs because increasing the number of frequency lines causes the frequency 

response function error to be averaged out. The result is that the updated system is forced 

to adhere closer to the true damaged frequency response function form. As can be seen in 

Figure 3-20 and Figure 3-21, the updated frequency response functions are very similar to 

the damaged reference data, with only small errors visible. 
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Figure 3-20: Comparison of frequency response functions for the Rayleigh damping damage 
identification case with Nω = 10, x1. 
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Figure 3-21: Comparison of frequency response functions for the Rayleigh damping damage 
identification case with Nω = 10, x2. 
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For a final run, the 10N  case is repeated with the four damping matrix 

components C1,1, C1,2, C2,1, and C2,2, included as damage parameters during the update. 

The damping matrix components must be used instead of the viscous damping 

coefficients cA and cB in order to allow correction of the off-diagonal matrix terms which 

are non-zero in the approximate Rayleigh damping matrix. The four damping matrix 

components have sensitivities as follows: 

 
1,1

0( )
0 0

kk

i

jZ
C

,  (3.264) 

 
1,2

0( )
0 0

kk

i

jZ
C

,  (3.265) 

 
2,1

0 0( )
0

k

ki

Z
jC

,  (3.266) 

 
2,2

0 0( )
0

k

ki

Z
jC

,  (3.267) 

The damage identification algorithm is in this case able to correct the damping 

model and converge with negligible error to the damaged parameters values, with the 

results 

 



www.manaraa.com

170 

 

 Updated damage parameter values:  

1

2

1

2

1,1
4

1,2
5

2,1

2,2

ˆ 0.9900
ˆ 1.000
ˆ 900.0
ˆ 1000

ˆ ˆ 4.000
ˆ 2.262 10
ˆ 1.012 10

0.1003ˆ

d

m
m

k

k
r

C

C

C

C

 

 Updated parameter error compared to the known solution (N/A denotes a 

quantity that cannot be calculated because of division by zero):  

0.000047%
0.000067%
0.000020%

ˆ 0.000075%
0.00062%

N/A
N/A
0.25%

d d

d

r r

r

ˆd dr rd d

drd
. 

The frequency response function comparisons given in Figure 3-22 and Figure 3-23 

confirm that the updated analytical system accurately matches the damaged system. 
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Figure 3-22: Comparison of frequency response functions for the Rayleigh damping damage 
identification case with Nω = 8 and damping parameters included in update, x1. 
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Figure 3-23: Comparison of frequency response functions for the Rayleigh damping damage 
identification case with Nω = 8 and damping parameters included in update, x2. 
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3.8.5 Discussion 

The presented example shows that the basic damage identification algorithm is 

capable of accurately identifying damage on an analytical 2 degree-of-freedom mass-

spring system with combinations of structural and generalized viscous damping. The 

damage cases presented include a small decrease in mass plus a larger decrease in 

stiffness with the addition of increases and decreases in structural damping for the 

problems when structural damping is present, all of which are identified with negligible 

error when the underlying damping is known. Because of the difficulty in determining 

generalized viscous damping matrices in physical structures, the example additionally 

addresses the impact of using simple proportional damping models in place of underlying 

damping which is severely non-proportional. For the system with light viscous damping, 

results show that Rayleigh damping model for two modes recreates the desired modal 

damping ratios well but causes non-negligible error in the frequency response functions. 

Damage identification performed using the proportional Rayleigh damping model in the 

analytical system and reference data from the non-proportionally damped damaged 

system produces erroneous results for the baseline case with two analysis frequency lines. 

However, when the number of frequency lines is increased the identification error 

becomes small and when the damping model parameters are included as update 

parameters the algorithm correctly identifies the damaged parameters with negligible 

error. 
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The example provided in this section is idealized, with zero noise and simulated 

reference data from the damaged system provided for all degrees-of-freedom. As a result 

the problems presented are linear—meaning the converged solutions generally be reached 

in a single iteration—with numerical round-off error being the only corrupting influence. 

Physical damage identification problems are more complicated with more corrupting 

influences. However, the example presented successfully demonstrates several key 

points: 

(1) The basic mechanics of the damage identification algorithm function as 

expected with negligible error. 

(2) The damage identification algorithm can be applied to systems with 

combinations of generalized viscous damping and structural damping. 

(3) The damage identification algorithm can be applied to systems with 

concurrent damage changes in stiffness, mass, and damping. 

(4) Moderate levels of non-proportional viscous damping in the reference 

system can be modeled using approximate proportional methods with 

acceptable levels of error for damage identification.  

(5) In the case of severely non-proportional viscous damping, assuming 

proportional damping will lead to corruption in the damage predictions. The 

algorithm contains features to help mitigate this error, however, including 

the ability to average out the modeling error by adding analysis frequency 

lines and the ability to include damping parameters into the update 
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parameter set and thereby correct the damping model during damage 

identification. 

The material contained in Chapter 3 was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, and Prof. Joel Conte. The dissertation author 

was the primary investigator and author of this work. 
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4 BASIC IMPLEMENTATION AND VALIDATION WITH NOISE 

In addition to the main algorithm equations there are several considerations of 

implementation which contribute to damage identification effectiveness, especially 

related to dealing with experimental frequency response reference data and noise. 

Frequency filtering and measurement noise quantification are discussed in Sections 4.1 

and 4.2, followed by a discussion of reference data domain type in Section 4.3. Further 

validation studies are then performed on an 8 degree-of-freedom damped mass-spring 

system with added noise in Section 4.4, including comparison to several competing 

damage identification algorithms. 

 Reference Data and Frequency Line Filtering 4.1

Experimental frequency response functions are usually generated from measured 

time series over a large number of frequency lines (typically in the thousands), either in 

the domains of displacement, velocity, or acceleration. Although other options are 

available, it is often beneficial for experimental vibration data to calculate the H1 system 

transfer function estimate and coherence estimate at each data point. In terms of 

acceleration data, the H1 frequency response function ( )ka( )ka  is calculated from measured 

input and output power-spectrum estimates, ˆ ( )xx kG  and ˆ ( )yy kG  at each measurement 

point, by  
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( ) ˆ ( )
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Gxa
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,  (4.1) 

and the coherence 2 ( )xy k  is found using  
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2
ˆ ( )

ˆ ( ) ˆ ˆ( ) ( )
xy k

xy k
xx k yy k

G

G G
. (4.2) 

Velocity and displacement data is equivalently converted using the same forms with the 

only difference being the notation and units. 

Although one of the strengths of frequency response based damage identification 

methods (as compared to modal parameter based methods) is the large amount of data 

which can be used, it is not advisable, or even possible, to perform damage identification 

with all available frequency lines. A subset must therefore be selected for the damage 

identification process. There are four main considerations in selecting frequency lines 

which help produce accurate solutions while minimizing computational expense. Firstly, 

the frequency lines should be in regions which promote accuracy with respect to 

sensitivities and residual force vectors. This usually means they should be in frequency 

regions with high response—i.e., close to peaks, or at least avoiding flat regions in the 

frequency response functions. Secondly, there should not be too much difference between 

the largest and smallest response data. Large disparity in response amplitude will cause 

high response data to overshadow low response data, potentially to the point where the 

problem becomes underdetermined with spurious results. Thirdly, frequency lines 
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corresponding to high levels of measurement noise should be avoided. Finally, the 

frequency range of interest needs to be specified—lower frequencies (dominated by 

global system modes with larger wavelengths), higher frequencies (dominated by 

localized modes with smaller wavelengths), or a combination of both. Damage will affect 

response when modal strain energy overlaps the damage region, and small, localized 

damage cases will generally be most easily discernible when looking at higher frequency 

response—modes with modal strain energy concentrated around the damage. On the 

other hand, to maintain a physically meaningful result the updated model should replicate 

measured structural response across a large modal frequency range and restricting the 

update to too small a frequency band may disturb this result. Update frequency lines 

should therefore be spread over a range that includes modes affected by damage and 

modes that are not.  

In order to meet these criteria the current algorithm employs a frequency line 

selection scheme based on three stages. 

(1) Natural Frequency based filtering: If natural frequency results are available, 

a convenient method of initially down-selecting data to avoid low response 

regions while ensuring good coverage is to cluster lines around modal peaks. 

The recommended method is to form bands around natural frequencies 

corresponding to the modes of interest and then choose the initial set of 

frequency lines as all of the frequencies within these bands. This step helps 

avoid the most erroneous regions while retaining the most useful data. It 
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should be noted that the modes of interest need to be selected as a preliminary 

step, an operation requiring operator inspection and input. 

(2) Frequency response function magnitude based filtering: A secondary 

method (or alternate first method if modal results are not available) is to 

average the absolute value magnitude of the frequency response function and 

establish an amplitude band which avoids excessively low and high response. 

Any frequency lines corresponding to an averaged absolute value frequency 

response function magnitude value falling outside of this band is then deleted 

from the set. This step helps ensure that all of the selected points will be 

influential and thus not wasted. 

(3) Coherence based filtering: Finally, coherence values corresponding to the 

measured frequency response function data can be referenced to identify and 

exclude regions of high measurement noise and/or system non-linearity. The 

recommended method is as follows. First, coherence values are either 

averaged across degree-of-freedom or the minimum coherence value found 

for each experimental frequency. All frequency lines falling below a specified 

coherence threshold are rejected. The specified number of update frequency 

lines are then selected spread evenly from this subset. In the case of fewer 

than the specified number of frequency lines being available above tolerance, 

the best available will be selected so that the specified number is still met.  
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Each of these methods has strengths and weaknesses, and the selection 

parameters—modal frequency banding, frequency response magnitude level, and 

coherence threshold—must be tuned for each problem depending on the data set 

characteristics. The natural frequency based method ensures good coverage, but doesn’t 

discriminate against low magnitude points that won’t contribute meaningfully to the 

update. Magnitude based selection helps ensure that influential data is used; however, the 

method requires the frequency response functions to be fairly flat so sections are not 

arbitrarily cut out completely, and large flat regions (highly damped) will tend to either 

attract too many frequency lines if they are above the threshold, or none at all if they are 

below, whereas peaky regions will capture only a small number of frequency lines within 

the acceptance band. Finally, the coherence based method helps avoid corrupt data and 

tends to push lines towards the high response regions of the peaks, but does not guarantee 

any sort of even spread coverage for experimental data. The three methods are therefore 

used in sequence, with natural frequencies ensuring good coverage and in general 

avoiding the low-response or low-sensitivity regions; frequency response magnitude 

ensuring there won’t be excessively low or high response lines; and coherence based 

selection allowing the desired number of update lines to be selected from the candidate 

lines passing the previous criteria.  
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 Initial Uncertainty Quantification of Data and Parameters 4.2

Once update frequency lines are selected, the reference frequency response 

function variances can be estimated using a coherence-based method similar to that 

presented by Doebling and Farrar [4-1], which was previously developed by Bendat and 

Piersol [4-2], and then assembled into [ ]vvS . The required modification for the current 

algorithm is to use the real and imaginary frequency response function form of Schultz et 

al. [4-3] instead of the magnitude and phase frequency response function form specified 

by Doebling and Farrar. The required real and imaginary frequency response function 

variances are found from the work of Schultz et al. by starting with their equation for the 

sample covariance matrix (Eq. 24 in their work), 

 
2

2 2
Re( ( )) Im( ( ))

ˆˆ1 ( ) ( )
ˆ ˆ ˆ2 ( )k k

xy k yy k
a a

av xx k

G

N G
2

( )) Im( ( ))k k)) Im( ()) Im( (( )) Im( ()) Im( ()) ( (Im()) Im(( ))( )))))) I ( ( )) , (4.3) 

where avN  is the number of averages used when measuring the initial power spectrums. 

Taking the square root and substituting in the power spectrum expressions rearranged 

from Eqs. (4.1) and (4.2) then gives  
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Doebling and Farrar state that their magnitude/phase based quantities are actually 

estimates of the magnitude/phase confidence bounds, and are related to the desired 

population variances through 
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 *ˆ ˆ avN . (4.5) 

This relationship holds also for the real and imaginary case, and thus the final population 

variance estimates can thus be finally found by combining Eqs. (4.4) and (4.5) and 

squaring again to give 
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This expression can be used, along with the measured frequency response and coherence 

functions, to estimate the variance associated with the data points. The resulting variance 

values are then combined into the diagonal measurement covariance matrix vvS . 

Initial parameter variances in the experimental case, however, are less clearly 

defined than measured noise variances and have to be estimated based on previous 

experiments and/or intuition, or just set to a generic starting quantity. The relative sizes of 

the parameter and noise uncertainties affect how the update proceeds since increasing the 

amount of parameter uncertainty effectively decreases the level of regularization in the 

least-squares update, freeing the algorithm to make greater changes to the parameters. 

However, increasing prior parameter uncertainty also increases the posterior uncertainty. 

This trade-off must be considered when specifying the parameter variances. Initial 

parameter standard deviation values of between 1% and 100% of the initial parameter 

values usually seem to give good results (Collins et al. [4-4]). An additional point is that 
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individual initial parameter variances can be tailored to reflect relative levels of 

uncertainty between parameters. For instance, mass parameters may have relatively low 

uncertainty, since they can be more easily measured compared to stiffness parameters. 

Conversely, damping parameters may have much higher values reflecting how accurately 

the values are known in the analytical model. 

 Displacement, Velocity, and Acceleration Domains 4.3

Experimental reference data are usually obtained in the acceleration time domain 

using accelerometers placed on the structure during vibration testing or in the velocity 

domain using a laser Doppler vibrometer. Data can additionally be obtained, theoretically 

at least, in the displacement domain using extensometers, strain gages, or lasers. In each 

case, the frequency response functions are calculated using the time series data power 

spectrums, as described above. The resulting frequency response functions, denoted here 

as ( )A
ka ( )A
ka for acceleration, ( )V

ka ( )V
ka  for velocity, and ( )D

ka ( )D
ka  for displacement, are 

related by multiplication with the circular frequency times the imaginary number, as 

 2( ) ( ) ( )A V D
k k k k ka j a j a2 ( )A V D2( ) ( ) 2
k k k k k(a (A( ) ( )( ) 2
k k k kk k) ( ) (() ( )( )) ( )) ( )( )) ( )) ( )) ( )( )) ( )( )(( )( )((( ) . (4.7) 

The frequency response function vector at frequency k , formed by inverting the 

dynamic stiffness matrix in Eq. (3.9) to produce 

 ( ) ( , )k ka Z r i , (4.8) 
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is in the displacement domain. The standard residual force vector originally presented in 

Eq. (3.78), 

( , ) ( , ) ( )k k kR r i Z r a( )k(((  

therefore also requires that ( )ka( )ka(  is a displacement frequency response function. If 

velocity or acceleration response is measured from the structure, the displacement 

domain frequency response function must thus be first calculated using  

 ( ) ( )V
k k ka a j( ) ( )V
k ka a j( ) ( )k k) ( ) j) ( )) () ( )) () (  (4.9) 

or 

 2( ) ( )A
k k ka a(( ) ( )A
k k) ( )a( ) ( )) () ( )) ()) ( )( ) , (4.10) 

(where squaring the imaginary number produces a negative, giving 2 2
k kj ) 

before calculating the residual force vector.  

Alternatively, a velocity or acceleration based residual vector can be calculated, 

as 

 ( , ) ( , ) ( , ) ( )V V
k k k k k kR r R r j j i Z r a ( )V

k(((( k( k( ,((((( ,(  (4.11) 

for velocity, and  

 2 2( , ) ( , ) ( , ) ( )A A
k k k k k kR r R r j i Z r a ( )A

k(((( k( k( ,(((( ,(  (4.12) 
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for acceleration, and damage identification performed in these respective domains using 

( )V
ka ( )V
ka (  or ( )A

ka ( )A
ka ( , respectively. Inspecting the damage identification equations, 

however, shows that there is no effective difference between using one domain over 

another, since the frequency multipliers cancel each other leaving only the original 

displacement based versions. To see this, the quantity that becomes the updated 

parameter covariance matrix, previously presented in batch-processing form as 

 
0 0

11 1
1 ( )T

r r RR ii i iQ S N S r N
,
 (3.122) 

is written equivalently as summation over frequency, giving 

 
0 0

1
1 1

1
1

( ) ( , ) ( )
N

T
r r k RR i k ki ii

k

Q S N S r N . (4.13) 

Frequency-explicit expressions can be written for the sensitivity matrix, 

 ( , )( ) ( )
ˆ

k
k ki

i

Z r
N a

r r

( )Z (Z )Z (ZZ , )Z ( )Z (ZZZZ , ), )Z ((( , )(( )Z , )Z (Z ( )(( )( )(( )( )(
irîr
irîir rîr

)k( . (4.14) 

where the double brackets again denote a three dimensional array of size d d rN N N  

and inverse residual force vector covariance matrix, 

 1 1 1( , ) ( , ) ( ) ( , )T
RR i k i k vv k i kS r Z r S Z r , (4.15) 

and substituting these into 1iQ  gives a further expanded form as  
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 (4.16) 

As can be seen in Eq. (4.6), the reference data variances are proportional to the frequency 

response function magnitude squared, and thus the covariance matrix vvS  will also have 

a displacement, velocity, or acceleration domain dependency, depending on the domain 

of the frequency response function, which allows definition of  

 2 2( ) ( ) ( )V
vv k k vv k k vv kS j S Skk

222  (4.17) 

for velocity and  

 4 4( ) ( ) ( )A
vv k k vv k k vv kS j S Skk

444  (4.18) 

for acceleration. The eventual independency to domain can be seen, by example of 

velocity domain, by replacing ( )ka( )ka(  with ( )V
ka ( )V
ka (  and ( )vv kS  with ( )V

vv kS , 

giving the velocity domain version  
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Substituting in ( ) ( )V
k k ka j a( ) ( )V
k k k(a ( )V
k k) (()))))  and 2( ) ( )V

vv k k vv kS S  produces 
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(4.20) 

and by collecting the scalar kj  and 
12

k  terms and recognizing 

12 2 1k kj  it can be seen that 11
V

ii
Q Q  as claimed. Rewriting the 

expression for updated parameter values, 

 1
0 01 1ˆ ˆ ˆ ˆ( )T

RR ii i i i i ir r Q N S r R N r r
,
 (3.121) 

in terms of frequency summation and expanding in the same way produces a similar 

equivalency, as does the same process for 1iQ  and 1ˆ
ir  in the acceleration domain. 

Because of the least-squares minimization algorithms’ invariance to displacement, 

velocity, or acceleration domain, the only effective difference in using one of the 

domains over another occurs in the frequency filtering step described in Section 4.1 

during frequency response function magnitude based filtering. As described, this method 

blocks frequency lines for which the summed magnitude is above or below user-defined 

thresholds. Since the frequency response function magnitudes will be higher with 

frequency by factors of kj  and 2
k   in the velocity and acceleration domains, 
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respectively, the thresholds will block different frequency lines in each domain. 

Therefore, if lower frequency lines are desired, filtering in the displacement domain may 

be preferable, and vice versa for the case of a greater number of high frequencies being 

desired. In fact, this fact demonstrates that for filtering the frequency response function 

magnitude could be scaled in any desired fashion to change the effect of the thresholds, 

so long as the frequency response functions are either transformed back or other related 

quantities scaled similarly, although the relative information potency moderation which is 

the whole point of this filtering step may then be diminished. 

 Analytical Validation on Noisy System with Comparison to Other Methods 4.4

The statistical damage identification algorithm is now analytically validated on an 

8-degree-of-freedom damped mass-spring system with varying levels of additive noise. 

Noise in low levels simulates the ambient noise floor and in higher levels simulates, for 

example, faulty sensors or wiring. The current damage identification algorithm is then 

compared to four similar methods from the literature on the same system. Programs were 

written in Matlab R2009a [4-6] to run all test cases. 

4.4.1 Healthy System Description 

The structurally damped 8-degree-of-freedom mass-spring system is modified 

from the undamped launch vehicle and satellite model developed by Kabe [4-7] as a 
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challenging test case for system identification algorithms. The system has many 

interconnections and a wide range of stiffness and mass parameter values producing 

closely-spaced and coupled modes of varying magnitudes and a wide range of parameter 

sensitivities. Figure 4-1 shows a schematic of the system expanded into two-dimensions 

to show connectivity clearly. Each mass has only 1-degree-of-freedom, however, so a 

more accurate visualization is with all masses and their motion on a one-dimensional line, 

as in Figure 4-2. This figure also shows a potential breakdown of the system in terms of 

launch vehicle systems, including the main primary structure represented by m2 through 

m7, a component mounted on secondary structure represented by m1, and the payload 

represented by m8. Changes from the original Kabe system are restricted to the addition 

of structural damping and the addition of noise. A structural damping parameter is 

included for every spring in the system with damping values chosen to be relatively low 

for low-stiffness springs and higher for high stiffness springs to simulate, for instance, 

lower damping in the connection between the launch vehicle and payload structure and 

higher damping in the interconnected and propellant loaded primary structures. The 

distribution of structural damping coefficients from 0.002 to 0.050 also causes the overall 

damping to be strongly non-proportional. All parameter values for the healthy system are 

given in Table 4-1.  
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Figure 4-1: Kabe 8-degree-of-freedom mass-spring system, distributed representation. 

 

 

 

 

Figure 4-2: Kabe 8-degree-of-freedom mass-spring system, in-line launch vehicle representation. 
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Table 4-1: Modified Kabe 8-degree-of-freedom healthy system parameters. 

Spring stiffness parameters Spring damping parameters Mass parameters 

k1 = 1.50 k9 = 900 η1 = 0.005 η9 = 0.002 m1 = 0.001 

k2 = 1000 k10 = 1000 η2 = 0.050 η10 = 0.020 m2 = 1.00 

k3 = 10.0 k11 = 10.0 η3 = 0.010 η11 = 0.005 m3 = 1.00 

k4 = 1000 k12 = 2.00 η4 = 0.050 η12 = 0.002 m4 = 1.00 

k5 = 100 k13 = 1000 η5 = 0.020 η13 = 0.010 m5 = 1.00 

k6 = 900 k14 = 1.50 η6 = 0.002 η14 = 0.002 m6 = 1.00 

k7 = 100  η7 = 0.010  m7 = 1.00 

k8 = 100  η8 = 0.010  m8 = 0.002 

     

 

 

The system thus defined in its baseline state has eight modes. Figure 4-3 

summarizes the modal information, including unity-scaled mode shape plots and natural 

frequency and modal damping values given in the plot titles (natural frequency and 

damping ratio values are also given along with their damaged counterparts in Table 4-2, 

Section 4.4.2). In the mode shape plots x4 and x5 have been swapped to better match the 

in-line launch vehicle representation of the system presented in Figure 4-2. It can be seen 

that the modes are closely spaced in frequency, especially in the cases of modes 2 and 3 

which occupy the same frequency to three significant figures of accuracy, and the 

damping varies from light to moderate with modal damping ratios distributed between  
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Figure 4-3: Modal information for the healthy 8 degree-of-freedom system (with x4 and x5 swapped 
to match the in-line launch vehicle orientation given in Figure 4-2). 

x1 x2 x3 x5 x4 x6 x7 x8

0

0.5

1
Mode 1 ( 1 = 4.88 Hz, 1 = 1.1%)

x1 x2 x3 x5 x4 x6 x7 x8
0

0.5

1
Mode 2 ( 2 = 5.05 Hz, 2 = 4.9%)

x1 x2 x3 x5 x4 x6 x7 x8

0

0.5

1
Mode 3 ( 3 = 5.05 Hz, 3 = 1%)

x1 x2 x3 x5 x4 x6 x7 x8

-0.5

0

0.5

1
Mode 4 ( 4 = 5.15 Hz, 4 = 2.5%)

x1 x2 x3 x5 x4 x6 x7 x8

0

0.5

1
Mode 5 ( 5 = 5.44 Hz, 5 = 2.5%)

x1 x2 x3 x5 x4 x6 x7 x8

-0.5

0

0.5

1
Mode 6 ( 6 = 5.66 Hz, 6 = 1.2%)

x1 x2 x3 x5 x4 x6 x7 x8
0

0.5

1
Mode 7 ( 7 = 6.17 Hz, 7 = 0.53%)

Degree-of-Freedom
x1 x2 x3 x5 x4 x6 x7 x8

0

0.5

1
Mode 8 ( 8 = 6.67 Hz, 8 = 0.21%)

Degree-of-Freedom

 

 

Real Portion Imaginary Portion

Mode Shapes



www.manaraa.com

194 

 

0.21% and 4.9% critical damping. Inspection of the mode shapes shows that the first 6 

modes are dominated by global system response while mode 7 is dominated by motion of 

the small mass at x1 and mode 8 is dominated by motion of the small mass at x8.  

Noise-free healthy frequency response functions, generated at each degree-of-

freedom in the displacement domain by forming and inverting the dynamic stiffness 

matrix [ ( , )]kZ r  at each of 4096 frequency lines and extracting the column 

corresponding to x5, are shown superimposed in Figure 4-4. The damping is heavy 

enough that modes 1 through 6 are highly coupled with modal peaks blending into each 

other. Modes 2 and 3 are so closely coupled with each other and the dominant 

surrounding modes that they cannot be clearly distinguished in the frequency response 

functions. Modes 7 and 8 appear predominately in the frequency response functions from 

to x1 and x8 which reflects the observation that modes 7 and 8 correspond to motion of the 

small masses m1 and m8 and are largely uncoupled from the rest of the system.  

4.4.2 Damaged System Description 

Three damage cases are considered for the system as shown in Figure 4-5:  

1. Single 10% decrease in the medium sensitivity stiffness parameter k8 to 

represent local structural damage (e.g., damage to the launch vehicle 

structure);  

 

 



www.manaraa.com

195 

 

 

Figure 4-4: Noise-free frequency response functions from the healthy system in terms of real and 
imaginary components. 
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Figure 4-5: Schematic overview of damage cases. 
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2. Damage case 1 plus a single 5% stiffness decrease in the low sensitivity 

parameter k12 to represent local structural damage combined with local 

subsystem damage (e.g., damage to the launch vehicle structure combined 

with damage to the payload mounting structure);  

3. Damage case 2 plus a 1% increase in the primary masses m2, m3, m4, m5, and 

m6 to represent combined local damage cases in the presence of global mass 

change (e.g., damage to the launch vehicle and payload structures combined 

with an increase in propellant load compared to the baseline case). 

The damaged system natural frequencies and damping ratios are given in Table 

4-2 along with the healthy system values and the percent change from healthy to 

damaged values. The effect of the damage cases is additionally summarized in Figure 4-6 

for the natural frequencies, Figure 4-7 for the damping ratios, and Figure 4-8 for the 

mode shapes which are presented in terms of unity-scaled magnitude to better show the 

comparison on a global level.  

The following observations can be made from the figures:  

 Damage case 1 primarily affects modes 5 and 6, with smaller influences on 

modes 1 and 4 and negligible influence on modes 2, 3, 7, and 8. 

 Damage case 2 is very similar to damage case 1 with the exception of a 

significant and local impact on mode 8. 
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Table 4-2: Summary of natural frequencies and modal damping ratios for healthy and damaged 
systems, including percent change from healthy to damaged values. 

Mode 
1 2 3 4 5 6 7 8 

Healthy 
System 

fn (Hz) 4.88 5.05 5.05 5.15 5.44 5.66 6.17 6.67 
ηn 0.0111 0.0489 0.0104 0.0247 0.0254 0.0124 0.0053 0.0021 

Damage 
Case 1 

fn (Hz) 4.88 5.05 5.05 5.15 5.42 5.64 6.17 6.67 
% change -0.034% 0.000% -0.007% -0.022% -0.419% -0.354% 0.000% -0.002% 

ηn 0.0109 0.0489 0.0104 0.0245 0.0247 0.0134 0.0053 0.0021 
% change -1.724% 0.007% 0.222% -0.798% -2.680% 8.584% 0.000% -0.123% 

Damage 
Case 2 

fn (Hz) 4.88 5.05 5.05 5.15 5.42 5.64 6.17 6.57 
% change -0.034% 0.000% -0.013% -0.022% -0.420% -0.355% 0.000% -1.436% 

ηn 0.0109 0.0489 0.0104 0.0245 0.0247 0.0134 0.0053 0.0021 
% change -1.726% 0.007% 0.210% -0.804% -2.693% 8.585% 0.000% 0.189% 

Damage 
Case 3 

fn (Hz) 4.86 5.02 5.05 5.13 5.39 5.61 6.17 6.57 
% change -0.528% -0.492% -0.029% -0.504% -0.911% -0.849% -0.004% -1.438% 

ηn 0.0109 0.0489 0.0107 0.0243 0.0247 0.0134 0.0053 0.0021 
% change -1.718% 0.034% 2.903% -1.898% -2.711% 8.577% -0.296% 0.036% 

 

 

 The mass decreases in damage case 3 have a more broadband effect on the 

system, affecting modes 1, 2, 4, 5, and 6. Modes 3, 7, and 8 are not influenced 

significantly in terms of mode shape or natural frequency by the mass 

increases since these modes are dominated by activity in the unaltered masses. 

 Natural frequencies are decreased by all damage cases, with the greatest 

decrease of approximately 1.4% resulting from the localized stiffness 

reduction on k12 in damage cases 2 and 3. Damage case 1 produces a decrease 

of approximately 0.4% on modes 5 and 6 while damage case 3 produces a 

further decrease of approximately 0.5% on modes 1, 2, 4, 5, and 6. 
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Figure 4-6: Effect of damage cases on system natural frequencies. 
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Figure 4-7: Effect of damage cases on system modal damping ratios. 
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Figure 4-8: Comparison of mode shape magnitudes for the healthy system and three damage cases. 
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 Modal damping ratios are impacted on the order of 2% to 8% with modes 1, 4, 

and 5 decreasing slightly for all damage cases, mode 6 damping increasing 

significantly for all cases, and mode 3 increasing moderately for damage case 

3. Damage case 1 has the largest damping impact of all of the damage cases 

followed by damage case 3 which roughly matches the impact of the damage 

cases on other modal characteristics. 

 The damage cases do not dramatically affect the mode shapes, with the 

greatest changes occurring on modes 4, 5, and 6 from damage case 1. Mode 3 

is also affected locally from damage case 2, although this does not cause a 

significant change in global natural frequency indicating that the mode is still 

dominate on a global level by small movements of the heavier masses. 

A comparison of frequency response functions from the healthy and damaged 

systems is given in Figure 4-9 for the driving point degree-of-freedom, x5, and Figure 

4-10 for the small payload simulating mass at degree-of-freedom x8, both in terms of real 

and imaginary components. As observed from the mode shapes, damage case 1 primarily 

affects the frequency zone around modes 5 and 6 while damage case 2 only causes 

further influence to mode 8, shifting the mode down in frequency without affecting the 

shape, and damage case 3 has a more broadband impact on the system.  
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Figure 4-9: Comparison of healthy and damaged frequency response functions for the driving point 
degree-of-freedom, x5, in terms of real and imaginary components. 
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Figure 4-10: Comparison of healthy and damaged frequency response functions for the small 
payload mass at degree-of-freedom, x8, in terms of real and imaginary components. 
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4.4.3 Damage Identification with Noise 

The current damage identification algorithm was applied to the three damage 

cases with increasing amounts of noise applied to all degrees-of-freedom. The frequency 

line filtering criteria based on natural frequency, average frequency response function 

magnitude, and coherence discussed in Section 4.1 were applied via an automated 

algorithm. Also, the coherence based method for estimating variability in the measured 

data described in Section 4.2 was implemented. All calculations were performed in the 

displacement domain.  

For all runs, noise was added to the system in the time domain by the following 

process, as recommended by Zimmerman [4-5]: 

(1) Reflect each frequency response function about the vertical axis and remove 

the last point in the resulting signal, then apply an inverse Fourier transform to 

create an all real time series representation of the data;  

(2) Add a vector of Gaussian random noise scaled so that the ratio of system 

response signal power to noise signal power matches a specified level; 

(3) Transform the noisy time series back into the frequency domain by forward 

Fourier Transform.  

This process results in noise of constant variance superimposed on the frequency 

response function with measurement vectors corresponding to different degrees-of-

freedom having different levels of constant variance (i.e., broadband white) noise and 
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incoherent noise vectors on different degrees-of-freedom. It should be noted that all ‘zero 

noise’ cases actually have a small amount of noise added to avoid numerical instability 

from having measurement variability values equal perfectly to zero. In these cases a noise 

vector is created with power equal to 0.000001% of the signal power. 

Coherence functions were estimated for the analytical noise cases using 

 1ˆ ( )
( ) ( )1
( ) ( )

xy k H
k k

H
k k

a a

a a

, (4.21) 

where ( )ka  is the noise-free frequency response function, ( )ka  is the Fourier 

transform of the pure noise time series, and superscript H indicates the Hermitian 

transpose. 

Since the 8 degree-of-freedom system represents a simple test case compared to 

the real-world problems for which the algorithm is designed, it was assumed that there 

was no damage location information available to help down-select the initial set of 

damage parameters. All runs therefore include damage factors for all mass and stiffness 

parameters in the system for a total of 22 update parameters—8 mass and 14 stiffness.  

The three methods for frequency line selection—natural frequency based 

screening, average frequency response function magnitude based screening, and 

coherence based screening—were applied in series. For the first step, frequency lines 

were chosen which are within 4% of each natural frequency. The second step removed 

frequency lines corresponding to an average (over degrees-of-freedom) frequency 



www.manaraa.com

207 

 

response function magnitude of -70dB. The third step selected the pre-specified number 

of final analysis frequency evenly spaced from the set with minimum coherence values of 

0.98 or greater, with the best available lines chosen in the event that not enough candidate 

lines meet the criteria. This selection process results in different frequency lines for each 

damage and noise case since the frequency response function magnitude and coherence 

based criteria are affected by the unique noise in each data set. 

Additional test-parameters for all runs are as follows:  

 Number of frequency lines equal to the number of update parameters (Nω = Nr 

= 22);  

 All analysis frequency lines restricted to the modal range of 4.5 Hz to 7.0 Hz; 

 Initial parameter standard deviation equal to 1.0% of the healthy value;  

 Initial sensitivity perturbation equal to 10%;  

 Iteration step limit of 0.2 and no parameter bounds; 

 Damage factor convergence tolerance equal to 0.0001;  

 Maximum number of iterations equal to 100. 

The main metric used for assessing damage identification success is relative 

parameter error between the algorithm output and the true known values of the damaged 

system parameter set. For individual parameters the relative error is calculated using  
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ˆ

100%
p

p p
r

p

r r

r
100%

rpprp 100
prpr

100p , (4.22) 

where pr  refers to the parameter being assessed, ˆpr  refers to the updated parameter 

estimate, and prprp  refers to the true experimental value. In order to better assess the overall 

damage identification results the mean relative error across subsets of the parameters is 

calculated using the equations   

 
1
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100 , (4.24) 

where the superscript d describes the stiffness parameters that were damaged for that case 

and the superscript h describes the stiffness parameters which were not damaged. This 

segregation gives the ability to distinguish between false negative results (increased 

damaged stiffness parameter error d
MRE ) and false positive results (increased healthy 

stiffness parameter error h
MRE ). Additionally, since mass parameters are included to 

screen for system mass changes between the baseline and damaged configurations, a third 

metric that tracks accuracy of mass predictions is defined as 

 
1

ˆ1 100%
m
r m mN

m s s
MRE m m
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r r

N r
100%

mrsrsr 10m
srs
mr

10 , (4.25) 

where superscript m refers to mass parameters. 
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As an initial screening case the algorithm was first run on all three damage cases 

with zero noise. Since noise is the only corrupting influence on the measurement vector, 

the coherence for this case has negligible error to unity for all frequencies and so the 

frequency lines are evenly distributed across the frequency range 4.5 Hz to 7.0 Hz.  In all 

three cases the algorithm reached the final solution in a single iteration, with a second 

iteration then used to verify convergence. Inspection of the results shows that the correct 

result was achieved for all parameters and all damage cases with a maximum parameter 

error of 0.0003%.  

The algorithm was then applied to the three damage cases with varying amounts 

of noise added to the damaged system reference data. Figure 4-11, Figure 4-12, and 

Figure 4-13 show examples of the reference data sets from damage case 1 with 0.1%, 1% 

and 10% added noise, respectively, to give a qualitative visualization of the range of 

noise cases. The cases of 0.1% and 1% noise represent normal dynamic data whereas 

10% noise represents an extreme case which might correspond to very low dynamic 

response or a malfunctioning data acquisition system. Analysis frequency lines 

automatically selected for these three examples are shown at the bottom of each 

coherence plot. 

Results are summarized in Table 4-3 for each damage and noise case by way of 

individual updated parameter error values and the three mean relative error metrics 

defined in Eqs. (4.21 – 4.24). The results are additionally plotted as absolutely value of 

relative parameter error in Figure 4-14 for damage case 1, Figure 4-15 for damage case 2,  
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Figure 4-11: Damaged system frequency response functions and coherence functions with 0.1% 
added noise. 
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Figure 4-12: Damaged system frequency response functions and coherence functions with 1% added 
noise. 
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Figure 4-13: Damaged system frequency response functions and coherence functions with 10% 
added noise. 
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Table 4-3. Damage identification relative error and mean relative error values. 

Damage Case 1 Damage Case 2 Damage Case 3 
Parameter Correct 0.1% 1% 10% Correct 0.1% 1% 10% Correct 0.1% 1% 10% 

εm1 0.001 -0.17% -0.85% -1.10% 0.001 -0.46% -1.62% -0.78% 0.001 -0.10% -0.52% -2.72% 

εm2 1.000 -1.89% -1.29% -1.15% 1.000 0.05% -1.81% -0.07% 1.010 0.10% -2.22% -7.13% 

εm3 1.000 0.02% 0.43% -1.99% 1.000 0.01% 0.03% -3.33% 1.010 -0.02% 0.11% -5.97% 

εm4 1.000 0.04% -0.37% -0.33% 1.000 0.03% -0.15% 1.50% 1.010 0.02% 0.10% 0.00% 

εm5 1.000 -0.02% -0.29% -1.01% 1.000 0.01% -0.10% 0.93% 1.010 0.03% -0.09% 0.63% 

εm6 1.000 0.09% 0.18% -1.33% 1.000 0.08% 0.03% 0.29% 1.010 -0.05% -0.17% -3.25% 

εm7 1.000 0.46% 2.04% 0.44% 1.000 -0.17% 0.55% -0.31% 1.000 0.07% -4.24% 0.07% 

εm8 0.002 -0.05% -0.22% 0.16% 0.002 -0.10% 1.32% -0.20% 0.002 1.57% 0.80% 0.64% 

εk1 1.500 -0.18% -0.87% -0.58% 1.500 -0.46% -1.73% -0.56% 1.500 -0.09% -0.45% -2.67% 

εk2 1000 -1.89% -1.29% -1.15% 1000 0.05% -1.80% -0.20% 1000 0.10% -2.22% -7.14% 

εk3 10.00 -1.86% -1.25% 0.67% 10.00 0.06% -1.82% -5.78% 10.00 0.10% -2.21% -5.62% 

εk4 1000 0.04% 0.47% -1.75% 1000 0.01% 0.10% -3.29% 1000 -0.02% 0.11% -6.66% 

εk5 100.0 0.00% 0.18% -3.17% 100.0 0.01% -0.30% -1.42% 100.0 -0.02% -0.17% -8.27% 

εk6 900.0 0.04% -0.42% -0.28% 900.0 0.03% -0.16% 1.55% 900.0 0.02% 0.11% 0.16% 

εk7 100.0 0.01% -0.42% -0.14% 100.0 0.02% 0.07% 0.47% 100.0 0.03% 0.20% 4.84% 

εk8 90.00 0.07% -0.11% -0.55% 90.00 0.05% -0.19% 2.33% 90.00 0.00% -0.08% -2.22% 

εk9 900.0 -0.02% -0.31% -0.99% 900.0 0.01% -0.11% 1.04% 900.0 0.03% -0.08% 1.35% 

εk10 1000 0.08% 0.19% -1.58% 1000 0.09% 0.02% 0.38% 1000 -0.05% -0.12% -3.76% 

εk11 10.00 0.57% 2.79% -0.07% 10.00 -0.13% 0.83% 0.67% 10.00 -0.27% -5.25% 2.23% 

εk12 2.000 -0.05% -0.43% -1.42% 1.900 -0.07% 1.48% 3.65% 1.900 1.49% 1.54% 3.64% 

εk13 1000 0.46% 2.03% 0.48% 1000 -0.17% 0.56% -0.39% 1000 0.07% -4.23% 0.08% 

εk14 1.500 -0.05% -0.20% 0.72% 1.500 -0.14% 1.10% 0.48% 1.500 1.64% 0.50% 0.74% 

εd
MRE  0.07% 0.11% 0.55%  0.06% 0.84% 2.99%  0.75% 0.81% 2.93% 

εh
MRE  0.40% 0.83% 1.00%  0.10% 0.72% 1.35%  0.20% 1.30% 3.63% 

εm
MRE  0.34% 0.71% 0.94%  0.11% 0.70% 0.92%  0.25% 1.03% 2.55% 

 

and Figure 4-16 for damage case 3, and the mean relative error metrics are plotted against 

noise percentage in Figure 4-17 for damage case 1, Figure 4-18 for damage case 2, and 

Figure 4-19 for damage case 3. It can be seen that parameter error increases with noise, as 

expected. Damage case 1 produces parameter error values ranging from 0.003% error on  
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Figure 4-14: Relative parameter error across increasing levels of noise for damage case 1. 
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Figure 4-15: Relative parameter error across increasing levels of noise for damage case 2. 
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Figure 4-16: Relative parameter error across increasing levels of noise for damage case 3. 
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Figure 4-17: Mean relative parameter error as function of noise for damage case 1. 

 

 

Figure 4-18: Mean relative parameter error as function of noise for damage case 2. 
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Figure 4-19: Mean relative parameter error as function of noise for damage case 3. 
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exception of error increasing with noise level for all cases. Overall the error is very low; 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

0.1% 1.0% 10.0%

M
ea

n 
R

el
at

iv
e 

E
rr

or
 (%

) 

Noise (%) 

Mean Relative Parameter Error Across Noise Cases - Damage Case 3 

Damaged Stiffness Parameters
Healthy Stiffness Parameters
Mass Parameters



www.manaraa.com

219 

 

however, for the 10% noise cases the max error approaches or exceeds the amount of 

damage on some parameters meaning that correct damage identification can only be 

performed with confidence on cases with commensurately high levels of damage. This 

limitation is realized on damage cases 2 and 3 where the 5% damage case on the payload 

simulating parameter k12 is identified with a maximum error of 3.7% alongside healthy 

parameter errors of up to 5.8% for damage case 2 or 8.3% for damage case 3 meaning 

that the actual damage would not be distinguishable without prior knowledge. For the 1% 

and 10% noise cases the coherence frequency line selection criteria actually prevents an 

analysis frequency line being present on the uncoupled mode associated with movement 

of the payload degree-of-freedom (mode 8 on m8) so this damage case can only be 

inferred through the noise by second-order couplings between m8 and neighboring 

degrees-of-freedom, creating further disadvantage. A positive observation, however, is 

that the mass parameters are identified on the same order of accuracy as the stiffness 

parameters whether or not there were actually changes in mass. Damage identification is 

therefore possible in the face of changing mass so long as mass parameters are included 

in the set of update parameters. 

4.4.4 Algorithm Comparison 

In order to provide further context for the performance of the current damage 

identification algorithm the runs were repeated with the current algorithm alongside four 

similar algorithms from literature. The competing algorithms are those of Araujo dos 
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Santos et al. [4-8], Zang and Imregun [4-9], Zimmerman et al. [4-5], and Ricles and 

Kosmatka [4-10]. The algorithm of Araujo et al. is essentially a deterministic version of 

the current algorithm based on least-squares minimization of frequency response function 

difference. The Zang et al. algorithm is also based on deterministic least-squares 

minimization but seeks to bring the analytical model into accordance with the reference 

data by minimizing error in two frequency response correlation functions. The algorithm 

of Zimmerman et al. applies minimum rank perturbation theory to find in one iteration 

step the stiffness or mass matrix change responsible for the difference between the 

analytical model and reference frequency response functions. The Ricles and Kosmatka 

algorithm is based on probabilistic least-squares minimization of the difference between 

analytical and reference natural frequencies and mode shapes.  

As with the current algorithm, each of these methods includes various specifics 

for implementation, such as unique criteria for frequency line selection and parameter 

filtering. Various implementation details are different between the as-published 

algorithms and can significantly impact the final results. The comparison is therefore 

homogenized by focusing on the underlying update equations with the same frequency 

lines used for all algorithms and some other aspects of as-published implementation 

either discarded or kept constant across all algorithms. Additionally, some aspects of 

implementation are modified when doing so improves the overall performance of the 

algorithms. Details of implementation and deviations from the published algorithms 

include the following.  
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For the Zang algorithm the weighted least-squares method seemed to overly 

constrain or otherwise corrupt results for this test case and the direct sensitivity 

implementation is used instead.  

The Zimmerman algorithm as published produces matrix changes instead of 

parameter changes so a secondary sensitivity method is implemented to reduce the matrix 

changes to parameter changes.  

For the modal parameter based method of Ricles and Kosmatka, analytical modal 

parameters are produced, where required, using an undamped eigenvalue analysis. Unlike 

with the frequency response function data, there is no simple connection between 

measured data and variance for the modal parameters. Standard deviation values are 

therefore estimated by multiplying the known applied noise percentage (available since 

the data was created analytically) by the natural frequency values or the largest 

normalized mode shape values, depending on data type. Finally, an automated routine is 

used to guard against mode switching at each iteration step by ordering all generated 

modes as closely as possible with the reference data based on the modal assurance 

criterion calculated between the two sets. The modal assurance criterion Error! 

Reference source not found. is generated using the equation 

 

H H
i j i j

ij H H
i j i j

MAC

H H
i j i ji j i jj i

ii j
H HH

ii j
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where iii  is the reference mode shape vector for mode i, j  is the model mode shape 

vector for mode j, and ... H  refers to the Hermitian, or complex conjugate transpose, for 

the given vector. Additionally, noise is manually propagated from the frequency response 

functions to the reference mode shapes and natural frequencies to simulate the error 

associated with modal parameter estimation on noisy data. This is accomplished by 

creating a noise vector equal to the noise percentage multiplied by the natural frequency 

or mode shape variability which is calculated as the maximum value multiplied by the 

noise percentage. 

For all runs the additional algorithm variables were set equal to their values from 

Section 4.4.3 (i.e., iteration parameter step limit of 20% ; 10% parameter perturbation; 

initial parameter standard deviation of 1%; the maximum number of iterations equal to 

100; convergence dictated by the average parameter change falling below 0.001). The 

frequency lines are selected from the subset that is plus or minus 4% of each of the first 

six natural frequencies, greater than -70 dB average frequency response function value, 

and coherence greater than 0.98 (natural frequencies 7 and 8 were not used for the 

comparison since doing so prevented the Zang algorithm from converging for the zero 

noise case). All algorithms (besides Ricles and Kosmatka) used identical noisy datasets 

for each analysis case. Finally, only stiffness parameter damage cases 1 and 2 are 

assessed since the Zimmerman algorithm is limited to either stiffness or mass changes in 

one step, but not both.  
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Results for all algorithms in terms of mean relative error for 0% noise are given in 

Table 4-4 for damage case 1 and Table 4-5 for damage case 2. The mean relative error 

results are also plotted in Figure 4-20 for damage case 1 and Figure 4-21 for damage case 

2. In both the tables and plots the error metrics calculated from no change in the healthy 

values are given as a baseline (note that the healthy value relative error metrics are  

calculated relative to the correct damaged values and so are not equivalent to the percent 

reductions in stiffness value). The results show that all of the algorithms converge to the 

correct results with negligible error with the current algorithm and the Araujo dos Santos 

et al algorithm performing slightly better than the others, both converging in two 

iterations to similarly low levels of error. The other three algorithms converge to 

generally similar levels of higher error, requiring 17 and 22 iterations for the algorithm of 

Zang et al. and 7 and 6 iterations for the algorithm of Ricles and Kosmatka for damage 

case 1 and 2, respectively (the algorithm of Zimmerman et al. is not iterative).  

The algorithms were subsequently run on both damage cases across 0.1%, 1%, 

and 10% noise. Results are summarized as mean relative error for the healthy and 

damaged parameter subsets in Figure 4-22. For the cases with added noise all algorithms 

except for the current algorithm and the algorithm of Araujo dos Santos reach the 

maximum number of iterations without converging. It can be seen that the Zimmerman et 

al. and Ricles and Kosmatka algorithms generally do not achieve meaningfully solutions 

for the cases with added noise. The Zang et al. algorithm achieves reasonable results in 

some cases despite not converging; however, the results do not appear to be stable.  
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Table 4-4: Damage identification relative parameter error and mean relative error values for 
damage case 1 (k8 -10%) with 0% noise (relative error given as value instead of percent error). 

Parameter Healthy 
Values 

Current 
Algorithm 

Araujo dos 
Santos Zang et al. Zimmerman 

et al. 
Ricles & 

Kosmatka 
εk1 0 1.69E-09 -1.22E-09 1.24E-04 0.00E+00 -1.20E-04 
εk2 0 -1.38E-10 -3.33E-10 2.65E-05 0.00E+00 9.00E-05 
εk3 0 2.94E-10 -1.01E-09 5.25E-04 0.00E+00 -1.02E-02 
εk4 0 -3.27E-10 1.07E-10 -3.90E-06 0.00E+00 -3.60E-05 
εk5 0 3.14E-09 -8.19E-10 2.91E-05 0.00E+00 4.00E-05 
εk6 0 2.03E-10 -6.27E-11 8.01E-06 3.99E-10 -1.29E-04 
εk7 0 -1.13E-09 -6.59E-11 1.88E-05 -3.60E-09 -1.22E-04 
εk8 0.111 3.78E-10 1.22E-09 4.40E-05 -1.11E-05 1.38E-04 
εk9 0 1.32E-10 8.25E-11 -1.11E-05 4.00E-10 1.56E-04 
εk10 0 1.00E-11 -6.25E-11 -2.81E-06 -5.65E-11 -5.20E-05 
εk11 0 7.37E-09 8.58E-10 3.61E-05 5.70E-09 1.43E-02 
εk12 0 6.55E-08 5.81E-09 5.46E-05 4.71E-11 2.30E-03 
εk13 0 -1.14E-10 -6.27E-11 1.87E-07 -5.70E-11 -1.12E-04 
εk14 0 -3.70E-08 -2.38E-09 -7.70E-05 -2.09E-11 -1.77E-03 
εd

MRE 0.111 3.78E-10 1.22E-09 4.40E-05 1.11E-05 1.38E-04 
εh

MRE 0 9.01E-09 9.91E-10 7.06E-05 7.91E-10 2.27E-03 
Iterations  2 2 13 N/A 7 

 

Table 4-5: Damage identification relative parameter error and mean relative error values for 
damage case 2 (k8 -10%, k12 -5%) with 0% noise (relative error given as value instead of % error). 

Parameter Healthy 
Values 

Current 
Algorithm 

Araujo dos 
Santos Zang et al. Zimmerman 

et al. 
Ricles & 

Kosmatka 
εk1 0 -6.00E-11 7.64E-10 -3.01E-04 0.00E+00 -5.33E-05 
εk2 0 -4.79E-10 -4.90E-11 -8.36E-07 0.00E+00 1.00E-04 
εk3 0 6.92E-10 1.40E-09 -8.48E-04 -1.90E-14 -1.18E-02 
εk4 0 -1.11E-10 5.33E-11 1.07E-05 0.00E+00 -8.70E-05 
εk5 0 -6.41E-09 6.04E-10 9.42E-06 -1.61E-14 2.10E-04 
εk6 0 -3.36E-10 -1.70E-10 -7.95E-07 -2.27E-05 -1.28E-04 
εk7 0 6.01E-09 -5.53E-10 -3.97E-06 -1.78E-10 -1.54E-04 
εk8 0.111 -6.37E-11 4.46E-10 1.80E-05 3.56E-04 -1.11E-06 
εk9 0 2.55E-10 1.45E-10 -1.08E-06 1.98E-11 1.59E-04 
εk10 0 -5.91E-10 -1.84E-11 -3.04E-07 5.11E-06 -1.30E-05 
εk11 0 -1.22E-08 -1.45E-09 4.15E-05 4.42E-09 1.63E-02 
εk12 0.053 -2.81E-08 -2.77E-09 -8.72E-06 8.06E-03 2.38E-03 
εk13 0 1.53E-10 5.60E-11 -1.81E-06 5.11E-06 -1.26E-04 
εk14 0 1.06E-08 6.45E-10 5.87E-06 -3.41E-03 -1.83E-03 
εd

MRE 0.082 1.41E-08 1.61E-09 1.34E-05 4.21E-03 1.19E-03 
εh

MRE 0 3.16E-09 4.92E-10 1.02E-04 2.87E-04 2.58E-03 
Iterations  2 2 21 N/A 6 
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Figure 4-20: Mean relative parameter error for damage case 1 with 0% noise. 

 

 

 

Figure 4-21: Mean relative parameter error for damage case 2 with 0% noise. 
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Figure 4-22: Mean relative parameter error for all algorithms across increasing levels of noise. 
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Additional runs of the noise cases, not presented herein, support this assertion with final 

parameter values at the maximum number of iterations being at times severely 

erroneous). In all noise cases, the current and Araujo dos Santos et al. algorithms perform 

very similarly with error increasing as a function of noise but staying low overall. 

Inspection of the converged frequency response functions shows relative frequency 

response function error consistent with the amount of parameter error. For example, 

frequency response function results from damage case 2 with 10% measurement are 

shown in Figure 4-23 for the driving point x5 and in Figure 4-24 for x8. In both cases, 

updated frequency response functions from the current algorithm and that of Araujo dos 

Santos demonstrate the highest fidelity to the reference data although it can be seen that 

neither one correctly identifies the mode 8 peak which is visible on the right hand side of 

the x8 plot. Despite having high error metrics for this example, the Zang et al. frequency 

response functions are quite accurate for most of the frequency range—possibly a result 

of this algorithm being based on matching frequency response function shape and 

amplitude metrics. However, the mode 8 peak which relates to the 5% stiffness decrease 

in k12 is very poorly resolved. The Zimmerman et al. results show noticeable error across 

the entire frequency range with a final result that more closely matches the healthy 

frequency response functions—a result that suggests a lack of movement in the damage 

parameters as a result of the high noise. The Ricles and Kosmatka frequency response 

function results bear no resemblance to the target reference data which reflects the 

algorithms divergence for this analysis case.  
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Figure 4-23: Updated frequency response function comparison for damage case 2 with 10% noise, 
degree-of-freedom x5. 
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Figure 4-24: Updated frequency response function comparison for damage case 2 with 10% noise, 
degree-of-freedom x8. 

4.5 5 5.5 6 6.5 7

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Frequency (Hz)

R
ea

l (
X 8/F

5)

Comparison of Updated Frequency Response Functions for x8

 

 

Correct
Current Algorithm
Araujo dos Santos
Zang et al.
Zimmerman et al.
Ricles & Kosmatka

4.5 5 5.5 6 6.5 7

-0.03

-0.02

-0.01

0

0.01

0.02

Frequency (Hz)

Im
ag

in
ar

y 
(X

8/F
5)

Comparison of Updated Frequency Response Functions for x8

 

 

Correct
Current Algorithm
Araujo dos Santos
Zang et al.
Zimmerman et al.
Ricles & Kosmatka



www.manaraa.com

230 

 

In order to better compare the Araujo dos Santos et al. algorithm to the current 

algorithm both are applied to damage case 3 from Section 4.4.3 across 0.1%, 1% and 

10% noise cases. All algorithm variables are kept the same as in the first comparison of 

the section with the exception of all mass parameters being included along with all 

stiffness parameters for 22 update parameters total, as in Section 4.4.3. Results of the 

comparison are summarized in Figure 4-25 and show greatly increased trending of error 

with noise for the Araujo dos Santos et al. algorithm compared to the current algorithm. 

The difference can be attributed to the increase in number of update parameters and 

correspondingly wider variation in parameter sensitivities which lead to decreased 

stability during the direct least-squares solutions used by the Araujo dos Santos 

algorithm. Regularization provided by the probabilistic formulation of the current 

algorithm on the other hand maintains stability even in the face of low and/or varied 

parameter sensitivities. This example additionally shows that this stability is maintained 

in cases of extremely high levels of noise. 

4.4.5 Discussion 

The current algorithm for statistical damage identification via frequency response 

function-based model correlation, exact sensitivity, and statistically consistent iterative 

linearization has been analytically validated on an 8-degree-of-freedom mass-spring 

system with nonproportional structural damping and additive broadband white noise on  
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Figure 4-25: Mean relative parameter error for the current and Araujo dos Santos algorithms across 
increasing levels of noise for damage case 3. 
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algorithms became unstable and divergent. The examples additionally demonstrated the 

current algorithm’s insensitivity to highly coupled system modes.  

Author’s note: The comparison algorithms were implemented as faithfully as 

possible within the acknowledged constraints of the comparison example. It is likely that 

their performance would improve with inclusion of the various additional unique 

practices discussed in each of the references and that the algorithm authors could find 

ways to further improve their results on the example system if given the chance. 

The material contained in Chapter 4 was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, and Prof. Joel Conte. The dissertation author 

was the primary investigator and author of this work. 
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5 FINITE ELEMENT MODEL IMPLEMENTATION AND VALIDATION 

Application of the algorithm to realistically sized structures requires coupling 

with a finite element model, where the damage is modeled through changes in stiffness, 

density, lumped masses, and material damping, or other smoothly varying parameters. 

Given a finite element model which accurately modeled the system in its baseline state, 

reference data from the damaged system, and information on the approximate damage 

location the system operates as follows:  

(1) Damage location information is translated into a set of candidate damage 

parameters (including possible stiffness, mass, and damping changes); 

(2) Frequency filtering is performed to determine analysis frequency lines, and 

create noise covariance matrix from coherence values;  

(3) The damage identification algorithm is applied to produce damage 

information, estimation uncertainty, and an updated finite element model.  

After damage identification is complete, post-processing can complete the structural 

health monitoring process. Post-processing activities may include examining updated 

damage parameter values and variances, damage mapping, structural analysis using the 

updated model, and refining the damage parameter set for subsequent iterations of the 

damage identification analysis. 

Implementation and code architecture are discussed in Section 5.1 and numerical 

issues and solutions are discussed in Section 5.2. A finite element model based analytical 



www.manaraa.com

235 

 

validation and parametric studies are presented in Section 5.3. The chapter concludes 

with methods for modeling damping in reduced coordinates and supporting examples in 

Section 5.4. 

 Code Overview and Architecture 5.1

Code to implement the damage update algorithm with finite element models was 

written in 64-bit Matlab 2009a [5-1] according to the schematic representation given in 

Figure 5-1. A cornerstone of the code is its ability to interact automatically with 

NASTRAN finite element model decks and the NASTRAN finite element analysis code 

to run updated models and read the results as the update progresses. This is handled via 

reading and writing the following standard NASTRAN text files:  

 ‘*.BDF’ bulk data files—standard NASTRAN input file, used to read model 

parameters (e.g., material and element properties, element connectivity) 

 ‘*.PCH’ punch files—optional NASTRAN output file, used to read degree-of-

freedom information  

 ‘*.OP4’ output data files— optional NASTRAN output file, used to read 

system matrices 

 ‘*.F06’ files—standard NASTRAN text-based output file, used to read modal 

data results if required.  
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Figure 5-1: Flowchart describing operation of the current algorithm operation (FE ≡ finite element, 
SHM ≡ structural health monitoring, FRF ≡ frequency response function, DOF ≡ degree-of-
freedom). 

 

As can be seen from Figure 5-1, the code is organized around a main driver which 

reads in all required information from the finite element model *.BDF file, structural 

health monitoring input deck, damaged elements set, and damaged frequency response 

function data, performs preliminary operations, and then calls the damage identification 

routine which loops until convergence is reached. The code is primarily written in a 

single script, but calls a series of sub-functions for operations that are used repeatedly, 

such as degree-of-freedom reduction. The 64-bit implementation allows large variables to 
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be stored relative to 32-bit Matlab limitations; however, even though the code was 

configured to maximize storage space and efficiency, it was found that performance was 

limited on the available PC workstation for models with greater than approximately 

12,000 degrees-of-freedom. This is not a large number of degrees-of-freedom compared 

to the number which would be required for large structures but it is large enough to allow 

validation of the code for reasonably sized sub-structures.  

 Numerical Issues and Solutions 5.2

There are several challenges involved with applying sensitivity based parameter 

estimation to realistically sized structures modeled using the finite element method. 

Potentially continuous physical damage cases must be discretized by the mesh, meaning 

that the damage definition will be approximate. The model must be created without prior 

knowledge of the exact damage and so discretization errors may be compounded. Also, 

the influence on model response from the combined effects of modeling error and noise 

must be less than the influence of the damage—considerably so for accurate damage 

identification. The result is that the entire structure must be modeled accurately with 

respect to not only the healthy condition but unknown damage cases, and thus a large 

number of elements and analytical degrees-of-freedom may be required, leading to 

problems with numerical conditioning, low individual parameter sensitivities, truncation 
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error, and nonlinearity when the model is reduced to the measurement degrees-of-

freedom.  

Several additions to the algorithm, described in the following paragraphs, help 

deal with these problems. The additions can be grouped into three categories: 

(1) Damage factor scaling; 

(2) Iteration step limit; 

(3) Methods to combat low-parameter sensitivity. 

5.2.1 Damage Factors 

Numerical conditioning is improved by using multiplicative damage factors for 

all update parameters instead of the real-unit parameters. These scaled factors equal unity 

for no change, zero for complete nullification, and fractions and multiples for partial 

damage, meaning all parameters within the algorithm—whether stiffness, damping, or 

mass—exist at the same order of magnitude. The real unit parameter values are recovered 

by multiplying their original value by the current damage factor before being sent back to 

the finite element model.  

5.2.2 Iteration Step Limit 

An iteration step limit can be implemented to aid nonlinear convergence. The step 

limit process functions by scaling down all damage factor changes proportionally at each 

iteration, if required, until the largest damage change is equal to the limit. The update 
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process is therefore prevented from moving too far in any iteration and is forced to 

adhere more closely to the underlying nonlinear convergence curve.  

5.2.3 Methods to Combat Low Parameter Sensitivity 

Algorithmic additions in the third category help address issues associated with 

low parameter sensitivity and the machine precision numerical truncation error that can 

occur as a result. As discussed in Section 3.6, the residual force vector sensitivity matrix 

is based on the dynamic stiffness sensitivity calculated via finite difference by (1) 

perturbing each damage factor in turn, (2) subtracting the perturbed dynamic stiffness 

from the original, and (3) dividing by the perturbation. Although all parameters are the 

same order of magnitude in the scaled damage factor space they are represented in real 

units within NASTRAN’s internal system matrix definitions. Therefore, if the parameter 

being perturbed is small compared to additive values in ˆ( )iZ r , the difference will get lost 

in truncation error and the effective sensitivity will become inaccurate or zero. As 

available computational numerical precision continues to increase, smaller and smaller 

sensitivities will be calculable through this method; however, the size of models will also 

increase and so the problem will persist to some extent. Three approaches are adopted to 

combat this problem, as detailed in the following paragraphs.  

The first method makes use of the fact that many damage cases can be modeled in 

such a way that the unreduced ˆ( )iZ r  is linear in îr —for example by modifying Young’s 

modulus in isotropic materials. The magnitude of multiplicative damage factor change, Δ, 
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therefore doesn’t matter and can be set very large, as opposed to the nonlinear case where 

it must be kept small enough that the local function behavior is close to linear.  

The second method involves grouping elemental parameters together under a 

single damage factor in such a way that changing the damage factor affects multiple 

elements. This step helps increase damage factor sensitivities (since a greater number of 

model parameters are being controlled by each damage factor), thereby decreasing the 

risk of truncation error in nonlinear parameters and improving numerical conditioning. 

The total number of parameters is also decreased, which consequently decreases 

nonuniqueness and computation times. The parameter grouping can be done in any way 

that makes physical sense; an obvious method is to group local clusters of elements 

which are likely to be under very similar damage conditions.  

The third method is to screen parameters as the update progresses and simply 

exclude those which fall below a certain sensitivity threshold, holding their current values 

constant for the remainder of the damage identification update. Even if the parameters are 

in a damaged area, low sensitivity means they will not contribute in a worthwhile way to 

the response and so their exclusion is mainly cosmetic. 

 Analytical Validation on Composite Sandwich Plate Models 5.3

The current damage identification algorithm is now validated analytically using a 

2028 degree-of-freedom composite sandwich plate model with simulated measurement 
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noise. This structure is based on modern all-composite aircraft wing skin design, with 

thin graphite-epoxy composite laminates bonded to each side of a honeycomb core. The 

resulting structures are extremely lightweight with high bending stiffness but are 

susceptible to impact damage which can cause core crushing and laminate damage with 

little or no external evidence. In order to demonstrate functionality of the algorithm on a 

quasi-experimental scale, validation damage identification runs were performed using 

analytically created noisy system transfer and coherence functions from three damage 

cases with data from a limited number of measurement points. A parametric study was 

then conducted to investigate relative performance of the algorithm when varying (1) the 

number of frequency lines used in the update, (2) the coherence threshold for the 

automatic frequency line selection scheme, (3) the amount of added noise, (4) the ratio of 

the number of measurement degrees-of-freedom to the number of frequency lines, and (5) 

the number of update parameters. 

A detailed description of the structure is given below followed by details of the 

validation and parametric studies. All operations were performed in Matlab R2009a [5-1] 

with finite element analysis performed using MD. NASTRAN 2006a [5-2]. 

5.3.1 Baseline System Description 

The structural system used for all studies is a square composite sandwich plate 

finite element model with areal dimensions 0.3048 m by 0.3048 m and thickness of 

0.004064 m on a 12 x 12 element grid. The 0.003048 m thick Nomex honeycomb core 
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was modeled as a MAT9 anisotropic material using PSOLID property definitions in 

CHEXA solid elements. The laminates were modeled to simulate four 0.000127 m thick 

plies of unidirectional graphite-epoxy composite according to the total layup [0/+45/-

45/90/core/90/-45/+45/0]T (where 0 degree plies are oriented with the x-axis and positive 

angles follow the right-hand-rule with the z-axis pointing vertically up) using the MAT8 

orthotropic material definition. The plies were combined using a PCOMP laminate 

property definition with CQUAD4 plate elements transversely offset away from the 

central plane so that they directly share nodes with the core to form a rigid connection. 

The model is shown in Figure 5-2 with material properties given in Table 5-1. 

 
 

 
Figure 5-2: Complete view and close up view of the model with 0 degree fiber orientation direction 
arrows aligned with x-axis, forcing degree-of-freedom as large vertical arrow, and lumped masses 
represented by solid circles (laminate damage region described in Section 5.3.2 is represented as dark 
patch in the bottom left quadrant). 
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Table 5-1: Finite element model material properties for the healthy sandwich plate (note: 
structural damping constant η and Rayleigh damping constants α and β were applied to 
the system after exporting undamped system matrices from NASTRAN). 

Laminates (3D orthotropic)  Core (3D anisotropic) 
Property Healthy Value  Property Healthy Value 

E11 (GPa) 132.4  G11 (GPa) 1.0000×10-7 

E22 (GPa) 9.1360  G22 (GPa) 1.0000×10-7 

G12 (GPa) 4.5970  G33 (GPa) 0.13800 

ν12 0.30000  G44 (GPa) 1.0000×10-7 

G13 (GPa) 4.5970  G55 (GPa) 0.041400 

G23 (GPa) 3.3000  G66 (GPa) 0.024100 

ρ (g/cm3) 1.6608  Gij, i ≠ j (GPa) 0 

η  0.001  ρ (g/cm3) 0.25156 

α 2×10-6  η  0.001 

β 0  α 2×10-6 

   β 0 

     

 

The material property values in Table 5-1 were reached through modal correlation studies 

on an experimental version of the test plate. In particular, the combined structural and 

Rayleigh proportional damping model was selected with the given values for η, α, and β 

based on excellent correlation to the test data. As mentioned in previous chapters, 

proportional damping is usually not accurate for built-up aerospace structures. However, 

for the thin plate with free-free boundary conditions in the current example the model is 

appropriate. The aforementioned correlation is not addressed further in this dissertation 

since the exact healthy values are not relevant to the objectives of the analytical studies. 
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In the general experimental case, reference data would be collected by vibration 

testing the damaged structure at a set number of measurement degrees-of-freedom and 

experimental frequency lines. For the current analytical validation, pseudo-experimental 

reference data was created to simulate real experimental data via the following process: 

(1) Apply damage to the baseline finite element model; 

(2) Extract mass and stiffness matrices and assemble the dynamic stiffness 

matrix at the pre-specified experimental frequency lines; 

(3) Invert the dynamic stiffness matrix at each frequency and save the resulting 

frequency response functions from the specified forcing degree-of-freedom; 

(4) Add the required amount of noise in the time domain as a percentage-of-

time-series power using the process defined in Section 4.4. 

The healthy baseline reference frequency response functions were created at 3667 

frequency lines over the range 100-1200 Hz, with forcing applied at the top-right corner 

upper surface normal-to-plate translational degree-of-freedom, as shown in Figure 5-2. 

Two 0.5 g lumped masses were attached at and near the forcing degree-of-freedom to 

simulate bonded accelerometers, as also shown in Figure 5-2. Noise at the 0.5% time 

series power was added to clean analytical frequency response functions to simulate the 

noise seen when performing experimental hammer-impact vibration testing in a 

laboratory environment. Coherence functions were calculated using the process described 

in Section 4.4.3. The resulting driving point baseline displacement frequency response 

function is given along with coherence in Figure 5-3.  
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Figure 5-3: Driving point frequency response functions with 0.5% noise from the three damage cases 
overlaid with the undamaged reference function (top), and coherence function from damage case 3 
(bottom), showing typical effects of noise. 

 

5.3.2 Damaged System Description 

Three damage cases were created to simulate possible impact damage centered in 

the lower left corner of the plate:  
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 Damage Case 1: Pure core crushing over a 4×4 element square region, 

modeled as a 50% reduction in out-of-plane shear stiffnesses E13 and E23 in 

damaged core elements;  

 Damage Case 2: Laminate damage over a smaller 2×2 element square region, 

modeled as a 10% reduction of all stiffness parameters in damaged laminate 

elements (E11, E22, G12, G13, and G23);  

 Damage Case 3: Combined core crushing and laminate damage, modeled by 

a combination of the first two damage cases.  

As with the baseline system, structural damping and viscous damping, both 

proportional to the global stiffness matrix, were added to the system for all cases. The 

damage cases are summarized in Figure 5-4 and Table 5-2. 

 

 
Figure 5-4: Description of in-plane plate dimensions and damage cases. 
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Table 5-2: Finite element model material properties for healthy sandwich plate and 
damage cases (note: structural damping constant η and Rayleigh damping constants α and 
β were applied to the system after exporting undamped system matrices from NASTRAN). 

Laminates (3D orthotropic) 
Property Baseline Value Damage Case 1 Damage Case 2 Damage Case 3 

E11 (GPa) 132.40 -10% no change -10% 

E22 (GPa) 9.1360 -10% no change -10% 

G12 (GPa) 4.5970 -10% no change -10% 

ν12 0.30000 no change no change no change 

G13 (GPa) 4.5970 -10% no change -10% 

G23 (GPa) 3.3000 -10% no change -10% 

ρ (g/cm3) 1.6608 no change no change no change 

η  0.001 no change no change no change 

α 2×10-6 no change no change no change 

β 0 no change no change no change 

     

Core (3D anisotropic) 
Property Baseline Value Damage Case 1 Damage Case 2 Damage Case 3 

G11 (GPa) 1.0000×10-7 no change no change no change 

G22 (GPa) 1.0000×10-7 no change no change no change 

G33 (GPa) 0.13800 no change no change no change 

G44 (GPa) 1.0000×10-7 no change no change no change 

G55 (GPa) 0.041400 no change -50% -50% 

G66 (GPa) 0.024100 no change -50% -50% 

Gij, i ≠ j 
(GPa) 

0 no change no change no change 

ρ (g/cm3) 0.251558 no change no change no change 

η  0.001 no change no change no change 

α 2×10-6 no change no change no change 

β 0 no change no change no change 
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Pseudo-experimental frequency response functions from each of the three damage 

cases were created in the displacement domain using the same process as described for 

the healthy baseline data in Section 5.3.1, including the addition of 0.5% added noise. 

The resulting driving point frequency response functions for each damage case are 

plotted along with a noise-free version of the healthy driving point frequency response 

function in Figure 5-5. A zoomed view is further given in Figure 5-6. The curves fall into 

two groups of two overlaid curves each with the healthy case and damage case 2 

functions in one group and the damage case 1 and damage case 3 functions in another. By 

comparing the curves to the known damage cases it can be inferred that the core damage 

causes an obvious change in vibration response while the smaller laminate damage causes 

a smaller change. The frequency response functions are further examined by way of mean 

absolute value frequency response function difference plotted at each of the normal 

degrees-of-freedom from the top laminate in Figure 5-7, Figure 5-8, and Figure 5-9 for 

damage cases 1, 2, and 3, respectively. These plots show the spatial distribution of 

average frequency response function difference on the plate as a result of each damage 

case. It can be seen that the damage produces predominately global changes in the 

response of the plate with local effects around the damage region as a second-order 

effect. The plots additionally support the previous observation that the core damage 

creates a smaller change in response than the laminate damage.  
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Figure 5-5: Driving point frequency response functions with 0.5% noise from the three damage cases 
overlaid with the undamaged reference function (top), and coherence function from damage case 3 
(bottom), showing typical effects of noise. 
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Figure 5-6: Zoomed view of healthy and damaged driving point frequency response functions with 
0.5% noise to better show relative impact of damage cases. 

 

 
Figure 5-7: Mean absolute value frequency response function difference at top laminate normal 
degrees-of-freedom for damage case 1 in units of dB. 
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Figure 5-8: Mean absolute value frequency response function difference at top laminate normal 
degrees-of-freedom for damage case 2 in units of dB. 

 

 
Figure 5-9: Mean absolute value frequency response function difference at top laminate normal 
degrees-of-freedom for damage case 3 in units of dB. 
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5.3.3 Finite Element Damage Identification Validation 

Damage identification was performed on each of three damage cases with the goal 

of validating basic operation of the main algorithm components on a realistic multi-

material composite structure modeling using finite elements. Algorithm parameters used 

for the validation runs were set as follows:  

 25 measurement degrees-of-freedom (Nd = 25) arranged in an evenly 

distributed 5 × 5 grid as shown in Figure 5-10. 

 

 

 

 

Figure 5-10: Analysis degrees-of-freedom for Nd = 25 damage identification validation cases, shown 
relative to finite element mesh on top laminate (degrees-of-freedom normal to the plate, coming out 
of the page). 

Top Laminate 
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 20 analysis frequency lines (Nω = 20) selected from the 3667 frequency lines 

available in each damaged reference data using the coherence criteria 

discussed in Section 4.1 with a coherence threshold of 0.999.  

 18 elemental damage factors chosen from the lower left quadrant of the plate 

according to Figure 5-11, giving a combination of nine core and nine laminate 

regions with 3 to 5 elements each for a total update parameter count of Nr = 

18. In the case of the core elements the damage factor was applied equally to 

out-of-plane shear stiffnesses E13 and E23 to model skin-core disbond. For the 

laminate elements the damage factor was applied equally to all orthotropic 

stiffness parameters (E11, E22, G12, G13, and G23), to model general laminate 

damage. In each case, this setup caused the system matrices to be linear with 

all damage factors, meaning a large perturbation (Δ = 1×106 for all runs 

herein) could be used to find the dynamic stiffness matrix sensitivities. 

 Initial damage parameter standard deviation values of 100% of initial value 

(i.e., prior variance values equal to 1.0), producing an initial parameter 

covariance matrix 
0 0ˆ ˆr rS  equal to the r rN N  sized identity matrix where 

rN  is the number of damage parameters.  
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Figure 5-11: Damage factor grouping for the baseline validation case, shown on the full plate at top 
and on cut-away sections of the core and upper laminate sandwich plate layers on bottom (heavy 
black lines delineate damage parameter groupings. 
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 Iteration damage parameter step limit applied such that any parameter 

attempting to change more than 9% of its original value would cause all 

parameter changes to be proportionally scaled down until it was below this 

limit. The particular value of 9% was a compromise between choosing a 

higher value, which would potentially not constrain the update enough to be 

stable; choosing a lower value, which would unreasonably slow convergence; 

and avoiding making the step limit a multiple of the known damage amounts, 

which would potentially provide an unfair advantage by limiting the damage 

factors to the exact solution before convergence. 

 Convergence criteria set to cause a break from iterations on the second 

consecutive incidence of mean parameter change less than 0.1% of the 

original values. 

Convergence plots for the baseline validation are given in Figure 5-12 with the 

correct damage levels shown as dotted lines. Table 5-3 additionally gives the converged 

values for each case and the amount of relative error for each parameter and mean 

relative error calculated over all of the updated parameters. The updated damage 

parameter error i  is calculated as  

 
0,

ˆ
100%

ˆ
i i

i
i

r r

r
100

ˆr ri ir ri ir r
, (5.1) 
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where iriri  refers to the ith correct posterior damage factor value, îr  refers to the ith updated 

posterior damage factor value, and 0,ˆ ir  refers to the ith  prior damage factor value. Mean 

relative error is calculated as mean absolute value percentages using 

 
1

1 100%
rN

i
irN

, (5.2) 

where rN  refers to the number of damage factors in the set (18 for the baseline validation 

cases).  

The results show successful damage identification for each of the three damage 

cases with mean relative parameter errors of 0.65%, 0.58%, and 0.34%, respectively. It 

can be seen that the healthy damage factors move from unity during convergence but then 

return very close to their undamaged value. The slopes of damaged parameter 

convergence curves are largely controlled by the iteration step limit causing damage case 

2 to converge faster than damage cases 1 or 3 since there is less damage. In each of these 

cases the parameter uncertainty moves from the prior value of 100% to between 0.02% 

and 1.2%, with values generally increasing from damage case 1 to damage case 3. 

Looking qualitatively at updated parameter uncertainties relative to each other leads to 

the belief that their relative sensitivity is largely a driver for their final value, with low 

sensitivity parameters having higher posterior uncertainties.  

A final trial run was performed on damage case 1 using an Nr = 9 update 

parameter grouping that encompasses the correct damaged region but does not follow the 
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Figure 5-12: Parameter convergence behavior from damage case 1 (top), damage case 2 (center), and 
damage case 3 (bottom), in the baseline algorithmic parameter state. (Note: an exact legend is not 
provided because of the large number of curves; converged values are given in Table 5-3). 
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Table 5-3: Baseline validation results summary. 

 Damage Case 1 Damage Case 2 Damage Case 3 
Parameter  

ir   
Prior 

value îr  
Converged 
value îr  

Error 

i  
Converged 
value îr  

Error 

i  
Converged 

value îr  
Error 

i  

rC1 1.00 0.499 -0.10% 0.994 -0.55% 0.502 0.20% 

rC2 1.00 0.494 -0.58% 0.996 -0.44% 0.498 -0.18% 

rC3 1.00 0.502 0.21% 1.011 1.11% 0.501 0.10% 

rC4 1.00 0.496 -0.37% 1.003 0.27% 0.501 0.08% 

rC5 1.00 0.506 0.58% 1.007 0.70% 0.498 -0.19% 

rC6 1.00 1.002 0.16% 1.001 0.05% 1.000 0.00% 

rC7 1.00 0.999 -0.08% 0.996 -0.43% 0.998 -0.25% 

rC8 1.00 1.001 0.12% 1.000 -0.03% 0.999 -0.08% 

rC9 1.00 0.998 -0.22% 0.997 -0.33% 1.001 0.11% 

rL1 1.00 0.985 -1.45% 0.898 -0.23% 0.905 0.51% 

rL2 1.00 0.983 -1.71% 0.987 -1.27% 1.001 0.06% 

rL3 1.00 1.022 2.15% 1.009 0.85% 0.996 -0.36% 

rL4 1.00 0.998 -0.23% 0.993 -0.67% 1.006 0.58% 

rL5 1.00 1.018 1.79% 1.022 2.19% 0.986 -1.41% 

rL6 1.00 1.007 0.69% 1.005 0.51% 0.999 -0.08% 

rL7 1.00 0.996 -0.40% 0.997 -0.29% 1.000 0.01% 

rL8 1.00 1.001 0.06% 1.003 0.28% 0.997 -0.32% 

rL9 1.00 1.008 0.80% 0.997 -0.30% 1.016 1.58% 

 
Mean 

Relative 
Error  

 
 0.65%  0.58%  0.34% 

 

 

damage outline exactly. Details of the parameter grouping are given in Figure 5-13. Since 

some of the parameter groupings include both healthy and damaged elements the damage 

cannot be modeled exactly and this case therefore more accurately represents a real-world 

damage identification problem. The damage factors converged to values of (counting 

across rows and then down columns from top left to bottom right) 0.87, 1.1, 0.62, 1.26,  
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Figure 5-13: Details of a core update parameter group with Nr = 9 where the parameter group 
boundaries do not conform to the damage region.  

 

0.08, 0.84, 0.66, 0.89, and 0.99. Inspection of these results shows a large amount of 

stiffness reduction in the center parameter grouping while the surrounding regions vary 

from a 38% stiffness decrease to a 26% stiffness increase. While none of the updated 

damage parameters correctly identifies the correct damage extent, the overall results 

suggest that the damage is centered in the correct location. The results could therefore be 

used as a basis for refining the update parameter groupings for a second run. 

5.3.4 Parametric Studies 

Studies on the effect of specific parameters on algorithm performance are now 

presented. The goal of each study was to determine the relationship between specific 

algorithm inputs and damage identification results and thereby guide selection of 

Nr = 9 
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parameter values for future problems. This was accomplished by performing several 

identification runs for each study, in each case varying the target parameter(s) while 

holding all other parameters constant.  

All cases were run starting from the damage case 3 configuration with the 

exception of the ‘number of update parameters’ study, which was conducted using 

damage case 1. All parameters besides those being studied were set equal to the values 

specified in Section 5.3.3 except where noted. Algorithm performance for each study is 

presented in terms of the mean relative error ε in Eq. (5-2) calculated separately for the 

total damage parameter set, the damaged parameter set, and the undamaged parameter 

set. In addition, the time taken to reach convergence is reported with each result 

normalized to a reference value of 15,000 seconds. Results and observations from these 

studies are presented in the following sections. 

5.3.4.1 Number of Frequency Lines 

Results of the study comparing the effect of number of frequency lines on 

algorithm performance are given in Figure 5-14. It can be seen that decreasing the 

number of frequency lines increases parameter error while decreasing computation time, 

reflecting the fact that less information leads to less averaging of the effects of noise and 

less computation. The Nω = 2 case did not completely converge, getting stuck oscillating 

about a local minima as is more likely to happen when fewer data points are used—thus 

there is no data point plotted in the time-to-convergence plot. 
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Figure 5-14: Results plots from first parametric study investigating effect of number of frequency 
lines. 
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5.3.4.2 Frequency Selection Coherence Tolerance 

Results of the frequency selection coherence tolerance study are given in Figure 

5-15 and show that increasing frequency selection coherence tolerance decreases 

parameter error and computation time. The improvement in performance occurs because 

increasing the coherence tolerance decreases the amount of noise in the data being used 

for update, leading to lower error and faster convergence. However, at a certain point (in 

this case somewhere between 0.999 and 0.9999) the error increases again slightly because 

of a lack of diversity in the data as it gets clustered around the most powerful modal 

peaks, and finally results remain constant as the same lowest-coherence frequency lines 

are used despite increasing frequency selection coherence tolerance. 

5.3.4.3 Amount of Noise 

Results showing algorithm performance as a function of increasing amounts of 

noise in the reference data are presented in Figure 5-16. The plots show that increasing 

noise leads to smoothly increased parameter error, while the time to convergence initially 

decreases slightly before increasing. These results reflect the fact that increasing noise for 

a fixed coherence tolerance drives frequency line selection towards the modal peaks, 

where relative noise is lower and differences in the effective residual force vector and 

parameter sensitivities are greater, leading to an initial increase in overall algorithm 

performance. However, at some point the increasing noise levels overwhelm this benefit 

and performance decreases again. The case of zero noise, not shown in the graph, did not  
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Figure 5-15: Results plots from second parametric study investigating effect of frequency line 
selection coherence tolerance. 
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Figure 5-16: Results plots from third parametric study investigating effect of noise level. 
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converge at all after over 300 iterations, presumably because of too many frequency lines  

in low-response regions that do not produce accurate sensitivities. This could be fixed in 

normal use by using one of the other frequency line selection techniques to group 

frequency lines closer to modal peaks where parameter sensitivities are higher. 

5.3.4.4 Ratio of Numbers of Measurement Degrees-of-Freedom to Frequency Lines 

The ratio of number of measurement degrees-of-freedom to number of frequency 

lines study was conducted to show the effect of number of measurement degrees-of-

freedom for a given allowable amount of data points. The particular values used are given 

in Table 5-4 and results are shown in Figure 5-17. The study results show that both 

parameter error and convergence time initially decrease as the ratio approaches unity 

before increasing again as the ratio becomes more biased towards the number of 

frequency lines. The best results occur at the ratio closest to unity. It is believed that the 

initial increase in performance is driven by the benefit of increasing numbers of  

 

Table 5-4: Algorithm parameters used for ratio of number of measurement 
degrees-of-freedom to number of frequency lines study. 

Ratio  
(Nr / Nω) Nd Nω Number of 

Data Points 
Measurement 
Points Grid 

56.33 169 3 507 13x13 
4.90 49 10 490 7x7 
1.25 25 20 500 5x5 
0.52 16 31 496 4x4 
0.16 9 56 504 3x3 
0.03 4 125 500 2x2 
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Figure 5-17: Results plots from fourth parametric study investigating the effect of the ratio of 
number of measurement degrees-of-freedom to number of frequency lines. 
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frequency lines, which causes the modal data to be better represented across the 

frequency spectrum. This benefit, however, is then increasingly overshadowed by the 

detrimental effect of decreasing spatial resolution across the plate and mode shapes. It 

can be concluded that the modal behavior of the structure needs to be accurately captured 

both spatially and across frequency for accurate damage identification. 

5.3.4.5 Number of Update Parameters 

In order to study the effect of the number of update parameters on algorithm 

performance, several sets of update parameters were specified. Details of the sets are 

given in Figure 5-18 relative to the core elements. This study was performed on damage 

case 1 with damage on the core only meaning the update parameter sets were all capable 

of modeling the damage accurately. Figure 5-19 gives results for the study and it can be 

seen that both mean relative parameter error and convergence time increase with Nr. This 

result occurs because increasing the number of update parameters causes more damage 

factors to have lower individual sensitivities which leads to a loss in numerical accuracy 

and algorithm stability during update in the presence of noise. The baseline parameter set 

of 18 damage factors actually presents a relatively difficult case and additional runs, not 

presented, showed that the lower Nr cases converged very quickly and accurately in all 

but the most severe noise cases. These easier cases were not used for the parametric 

studies because of the desire to generate greater parameter errors and provide a better 

understanding of algorithm performance. 
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Figure 5-18: Details of core update parameter groups compared to element grid and damaged region 
for the number of update parameters study for Nr = 3, 9, 18, and 36.  

 

5.3.5 Updated Parameter Uncertainty 

Figure 5-20 shows posterior uncertainty values for the noise study presented in 

Section 5.3.4.3. The uncertainty values are presented in the form of standard deviation 

percentages averaged for all damage factor parameters, the damaged parameter set, and 

the healthy parameter set. The values range from a low of 0.03% in the low noise case to 

45% in the high noise case. The values generally increase with noise, as would be 

expected since the noise has a corrupting effect on the damage identification and so 

should lead to more uncertainty in the solution. 

Nr = 3 Nr = 9 

Nr = 36 Nr = 18 
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Figure 5-19: Results plots from fifth parametric study investigating effect of number of update 
parameters. 
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Figure 5-20: Results plots from final parametric study investigating parameter uncertainty as a 
function of noise level. 

 

5.3.6 Discussion 

The algorithm was shown throughout the validation and parametric studies to 

perform very well, even in the face of up to 99.8% decrease in degrees-of-freedom 

between the analytical model and available measurements, high levels of measurement 

noise, and up to 36 individual update parameters. Damage identification performance 

could likely be increased by tailoring the various algorithm parameters which were held 

fixed during the current study. It can also be seen that the mean relative error for 

damaged parameters was lower than that for healthy parameters. This result likely 

reflects lower individual parameter sensitivities in the healthy parameter sets. 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0.01 0.1 0.5 1 5 10

P
ar

am
et

er
 U

nc
er

ta
in

ty
 (

S
td

. D
ev

. %
) 

Noise Level (% of Time Series Power) 

Algortihm Performance as Function of Measurement Noise 

Total Mean Parameter Uncertainty

Mean Damaged Parameter Uncertainty

Mean Healthy Parameter Uncertainty



www.manaraa.com

271 

 

 Damping in Reduced Coordinates 5.4

Accurate modeling of damping in the analytical system is required for the current 

frequency response based damage identification to function properly. For idealized 

simple systems it is possible to model damping accurately using classical assumptions 

(e.g., viscous dashpots and/or stiffness proportionality). However, for general real-world 

aerospace systems damping occurs because of many varied physical phenomena 

including friction in structural connections, losses generated by the micromechanical 

behavior of materials, and viscous friction of surrounding fluids. The various damping 

models for structural dynamic systems are essentially empirical, having been established 

and accepted over many years to fit various observed responses as opposed to derived 

from first-principles physics. The result is that there is usually no clear mathematical 

basis for modeling damping in real-world structures. As discussed in Sections 3.1 and 

3.3, some combination of structural and viscous damping is assumed to be adequate for 

the linear structural dynamic systems considered for the current damage identification 

algorithm. In particular, one or both of the following quantities must be specified: (1) a 

complex stiffness matrix *K  for structural damping and/or (2) a viscous damping 

matrix C  in full coordinates.  

In the current implementation it is recommended to fit one or both assumed 

damping matrices to measured data; however, the process is further complicated by the 

need to work in the reduced coordinate analysis degree-of-freedom set. Approximate 
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methods for including damping in reduced coordinates using elemental structural 

damping or proportional viscous damping are discussed in the following sections. 

5.4.1 Elemental Structural Damping 

In the finite element modeling framework, structural damping can be included on 

the element level through the definition of elemental damping parameters, specified as a 

material property for each element and denoted by the symbol e . The elemental 

complex stiffness matrices are defined through the relationship  

 * 1
e e eK K j  (5.3) 

for each element e, where eK  is the elemental stiffness matrix, and then assembled into 

the global system complex stiffness matrix *K  through the same element-to-global 

level assembly process used for the mass and stiffness matrices. The global system 

complex stiffness matrix is then assembled into the dynamic stiffness matrix in full 

coordinates and reduced as required using standard dynamic reduction with no loss of 

correctness.  

For implementation, the damping parameters e  can be estimated during initial 

model building based on knowledge of the element materials, as with mass and stiffness 

parameters, and then correlated to the measured frequency response function data if 

desired (for example by using the model correlation methods described in Section 6.1). 

Modal parameters are not required to implement elemental structural damping which 
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means the effort and error associated with modal parameter estimation can be avoided. 

The method can be accurate for true material damping but may be less so for other forms 

of structural damping, such as when the global damping is dominated by connections 

which are not explicitly modeled with elements containing damping parameters (e.g., 

when bonded or bolted joints are modeled using idealized rigid connections). On the 

other hand, if the finite element model is created with damping in mind it should be 

possible to account for all major sources of structural damping through this method.  

On the global level the elemental structural damping matrix will generally not be 

proportional to the global stiffness matrix and will therefore produce generalized 

damping. However, for simple plane structures with no major connections, such as plates 

made from one material, it may be possible that every element can be modeled with the 

same structural damping parameter . In this case the structural damping matrix 

relationship will simplify to 

 * 1K K j . (5.4) 

This simplification is included for completeness and is likely to be poor for real-world 

built-up structures. 

5.4.2 Proportional Viscous Damping Methods 

Proportional viscous damping matrices can be calculated and added to the system 

dynamic stiffness matrix in reduced coordinates through several methods, namely the 
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Rayleigh method, direct modal method, and extended Rayleigh method. In each case they 

can be applied correctly by being first calculated in the full degree-of-freedom set or on 

an ad-hoc basis directly in the reduced degree-of-freedom set as described in the 

following sections. 

5.4.2.1 Rayleigh Damping Method 

The most straight-forward method for adding proportional viscous damping is 

through the basic Rayleigh method first discussed in Section 3.3.1. The basic method 

requires defining proportionality constants α and β in order to define a damping matrix in 

the full degree-of-freedom set based on stiffness and mass matrices as 

 f f fC K M . (5.5) 

The dynamic stiffness matrix is then formed in the full degree-of-freedom set using 

 * 2( )k k kf f ff
Z K j C M , (5.6) 

and the reduced m-DOF system ( , )k mZ r  is found by dynamic reduction using Eq. 

(3.64). The proportionality constants can either be tuned to minimize error between 

analytical and reference frequency response functions or solved to exactly match one or 

two modes as described in Section 3.3.1 if modal data are available. However, unless all 

modes have modal damping ratios that match the relationship in Eq. (3.30) the method 

will not be accurate.  
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Rayleigh damping can alternatively be added in the reduced degree-of-freedom 

set as follows. The reduced degree-of-freedom stiffness matrix 
mK  and mass matrix 

mM  are calculated by first calculating the undamped dynamic stiffness matrix  

 * 2( )u
k k ff f

Z K M  (5.7) 

and then applying dynamic reduction using Eqs. (3.65) and (3.66), respectively. The 

viscous damping matrix is then found as 

 ( ) ( ) ( )k k km m mC K M , (5.8) 

where the reduced coordinate mass and stiffness matrices are functions of frequency as a 

result of the reduction process. The m-DOF dynamic stiffness matrix is finally 

constructed as 

 * 2( ) ( ) ( ) ( )k k k k k km m mm
Z K j C M . (5.9) 

5.4.2.2 Direct Modal Damping Method 

Measured modal information, if available, can be used to directly create a 

proportional viscous damping matrix C . The relationship is based on the assumption 

that the unknown viscous damping matrix can be decoupled using the undamped system 

eigenvector matrix, as explained in Section 3.2. To create the matrix a modal damping 

matrix is first assembled as  
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 2n n n nC M  (5.10) 

using modal data quantities n , n , and nM  derived from measured frequency response 

functions. The viscous damping matrix is then back-calculated using the measured mode 

shapes  and the relationship described in Eq. (3.26), rewritten as  

 T
nC C . (5.11) 

In the simplest case of a fully populated mode shape matrix, where d DN N N , the 

mode shape matrices in Eq. (5.11) can then be inverted producing the viscous damping 

matrix from the equation 

 
1 12T

n n nC M . (5.12) 

However, in the usual case of fewer modes than measured degrees-of-freedom the 

mode shape matrix will not be square and thus cannot be directly inverted. Modes can be 

removed or degrees-of-freedom reduced to force it square; however, this may lead to an 

unacceptable loss of information. Alternatively, a pseudo-inverse can be employed in 

place of the regular inverse producing the relationship 

 

( , )

2T
n n n

N N

C M

( ,,,,,,,

. (5.13) 
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When working in reduced coordinates the viscous damping matrix C  should be 

formed in the full degree-of-freedom coordinate system. This is accomplished by first 

expanding the measured mode shapes into the full degree-of-freedom set using the 

previously defined 

 ( )n n n mT r , (3.70) 

where ( )nT r is the undamped modal transformation matrix defined in Eq. (3.69) for 

each mode n and r refers to the appropriate analytical model parameter set. Assigning the 

notation n f  to the expanded mode shape for mode n to avoid confusion, the expanded 

mode shapes can be put into matrix form as 

 1 2 DNf f f fNNNDNDN . (5.14) 

The modal mass nM  must also be calculated by way of the reduced coordinate mass 

matrix by combining Eqs. (3.65) and (3.19) to form  

 ( ) ( ) ( )T T
n n f nm mM T r M r T r . (5.15) 

With these parameters calculated the direct method viscous damping matrix in the full 

degree-of-freedom set is formed as 

 

( , )

2T
n n nf f f

N N

C M

( ,,,,,,,

. (5.16) 
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The full degree-of-freedom 
fC  can then be combined with the mass and stiffness 

matrices to form the damped dynamic stiffness matrix. When reduction is subsequently 

applied to the dynamic stiffness matrix, the resulting equation is  

 * 2( )  ( ) ( ) ( )k k k k k km m mm
Z K j C M , (5.17) 

with 

 ( ) ( ) 2 ( ) .T T
k k n n n km f fC T M Tf  (5.18) 

An alternative ad-hoc approach is to calculate ( )k mC  directly in the reduced 

coordinate system using 

 

( , )

2T
n n nm m m

N N

C M

( ,,,,,,

,  (5.19) 

where the modal mass values again need to be calculated first using Eq. (5.15) with the 

reduced degree-of-freedom mass matrix first calculated by applying dynamic reduction 

using the undamped dynamic stiffness matrix. Although this approach seems promising, 

comparison of Eqs. (5.19) and (5.18) shows that the reduced coordinate approach 

produces a non frequency dependent version of mC  which is a disadvantage compared 

to the version created in full coordinates. 
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5.4.2.3 Extended Rayleigh Damping Method 

A potentially more accurate way to model proportional viscous damping is the 

extended Rayleigh modal damping method. As with the direct modal method the viscous 

damping matrix must be formed and added to the dynamic stiffness matrix in full 

coordinates before being reduced. This process is accomplished by first expanding the 

measured mode shape matrix into full coordinates using Eq. (3.70) and calculating modal 

mass values using Eq. (5.15). The full coordinate viscous damping matrix can then be 

found using the extended Rayleigh damping equation 

 
1

1

2 2
c

Tc n n
n c n nf ff f f f

c c nn

C K M M
M

. (5.20) 

This equation is the same as that discussed in Section 3.3.1, the only change being the 

addition of ‘f‘ subscripts to show quantities in the full coordinate system. Once the full 

coordinates damping matrix is available, the dynamic stiffness matrix can be formed in 

full coordinates and then reduced normally using Eqs. (3.63) and (3.64).  

An extended Rayleigh viscous damping matrix can also be calculated directly in 

reduced coordinates. This variation requires first calculating the reduced stiffness and 

mass matrices by forming the undamped coordinate transformation matrix from Eq. 

(3.63) and then applying Eqs. (3.65) and (3.66). The modal mass values are then 

calculated from the reduced mass matrix using Eq. (3.19) and the reduced coordinate 

viscous damping matrix is found as 
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1

1

2( ) ( )  ...

               ... ( ) 2 ( ) .

c
k km m

c

c
Tn n

k n c n n km m m m
c nn

C K

M M
M

(5.21) 

As with the reduced coordinate direct modal method this version of mC  is not 

mathematically consistent compared to the version calculated in full coordinates using 

Eq. (5.15) and should not be assumed to be accurate. 

5.4.2.4 Further Notes on the Direct Modal and Extended Rayleigh Methods 

Even when calculated in full coordinates the direct modal and extended Rayleigh 

direct methods involve approximations. Firstly, mode shape expansion is approximate 

because (1) the mode shapes must be expanded using an undamped transformation matrix 

and (2) the mode shapes are from the damaged system while the available matrices are 

from the baseline correlated analytical system (since the damaged system is not yet 

known). Secondly, the basic assumption of proportional viscous damping may not be 

physically accurate even when combined with structural damping and tuned to each 

modal damping ratio. Finally, real modal data must be used for matrix operations even 

when the underlying system produces complex modes (potential methods for calculating 

equivalent real modes from complex modes are discussed in the next section). As a result 

there will be some loss in orthogonality between the real mode shapes and system 

matrices. 
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The need to use real modal data will introduce increasing error as modes increase 

in complexity and cause the calculated real modes to become less representative of the 

actual complex modes. Mode shape expansion will increase error for systems which have 

a lot of damage and modeling error, although this error should decrease as the analytical 

system converges to the damaged experimental system. Furthermore, the error will 

generally increase with the amount of damping in the system. The presented methods for 

assigning proportional viscous damping in the reduced coordinate system will therefore 

be best suited to systems with relatively light damping. On the other hand, the ability to 

explicitly match measured damping ratios with no additional correlation is convenient 

and has the potential to be accurate enough for damage identification. 

5.4.3 Real Normal Modes from Complex Measured Modes 

In an experimental structure with non-proportional viscous and/or structural 

damping, measured mode shapes nn  and natural frequencies nn  will be complex. 

However, the proportional viscous damping methods discussed in Sections 5.4.2.2 and 

5.4.2.3 are limited to using real normal modes such as would result from the physical 

system being proportionally damped. Even for lightly damped structures ( 1n 1) the 

level of complexity will be non-zero and real-valued approximations of the natural 

frequencies and mode shapes must be calculated in order to apply either direct modal or 

extended Rayleigh damping.  
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Three methods for approximating normal real modes are proposed in this section. 

The first two are based on rotating each mode shape towards the real axis and then using 

either the real component or using the sign-preserved absolute value; the third is based on 

the work of Fuellekrug [5-4]. The methods are ad-hoc and don’t guarantee orthogonality, 

but they may provide an adequate approximation—especially for lightly damped 

structures. If only elemental structural damping is used then real-valued modal 

information is not required. 

5.4.3.1 Rotated-Real Method 

The rotated-real method is implemented by rotating each mode shape so that its 

largest component is scaled to 1 0i , using 

 
max

nrot
n

n

n

n

, (5.22) 

where max nn  refers to the mode shape vector element with the largest complex 

modulus (and secondarily with the largest phase if two elements have the same modulus). 

The real components of the rotated mode shape vectors are then assembled into the 

matrix form  

 Re
1 2Re Re Re

m
rot rot rot

NReReReReRe , (5.23) 

and the real mode shape matrix Re  or component modes Re
n  can be used in place 

of the complex mode shape matrix as required.  
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The associated real natural frequencies are found by taking the absolute value 

(complex modulus) of the complex measured values, producing 

 2 2Re Re Imn n n
2 2I2

n nImnn Im . (5.24) 

5.4.3.2 Rotated Absolute Value Method 

The rotated absolute value method is implemented similarly to the rotated-real 

method, starting with rotated complex mode shapes calculated using Eq. (5.14). The 

second step involves taking the absolute value of each mode shape value. However, in 

order to avoid losing the negative part of the shapes a negatives vector nP  is formed 

for each shape based on the sign of the real part; i.e., for each element m of each mode 

shape n, 

 
,

,
,

1,  if Re 0

1,  if Re 0

rot
n m

n m rot
n m

P . (5.25) 

The rotated absolute value mode shape matrix is then formed by taking the 

absolute value of each element of each rotated complex mode shape, performing a point-

wise multiplication with the corresponding nP , and assembling to form 

 1 1 1 2
abs rot rot rot

n nP P Prot rot Protrot rroP PProt rrotrot PP PP1 1 21 11 PP PP1 1 2 n nPn n1 1 21 1 21 , (5.26) 

where  indicates element-by-element (point-wise) multiplication. 
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The associated real natural frequencies are found, as with the first method, 

through Eq. (5.24). 

5.4.3.3 Fuellekrug Method 

The Fuellekrug method is based on the work developed in reference [5-4]. The 

method uses singular value decomposition to transform the rotated real mode shape array 

into a reduced coordinate system, if required, and then solves an eigenvalue problem for 

the modally derived mass modified stiffness matrix. There are three possible scenarios 

which must be addressed separately in this method based on the relative values of number 

of modes mN  and number of measurement degrees-of-freedom dN : 

When m dN N  the method is implemented as follows: 

(1) Rotate mode shapes so largest component of each shape is scaled to 1 0i  

using Eq. (5.22) and then assemble the rotated-real mode shape matrix using 

Eq. (5.23). 

(2) Perform a singular value decomposition of the real rotated mode shape 

array, 

 Trot rot
mSVD T V , (5.27) 

to get an ,d mN N  dimensional transformation matrix mT , where the 

additional components  and TV  can be discarded. 
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(3) Use mT  to create a reduced coordinates square mode shape vector (i.e., 

such that the reduced degree-of-freedom set is of length mN ), 

 TR rot
mT , (5.28) 

and separate back into individual mode shapes,  

 1 2 m
R R R R

N
RR

mNmNNNNN . (5.29) 

(4) Solve for the mass-modified stiffness matrix, MK  by defining two modal 

information matrices,  

 
1 1

* *
1 1 1 1

,m m

m m m m

R R R R
N N

A R R R R
N N N N

P

RR
NNNNN

,
* *R * *RR * RRR RR

m m mm m m1 1 1 Nm m mm m1 1 11 1 1 N N NN Nm m
RRR

mmNmNNm

 (5.30) 

 
2 22 * 2 *

1 1 1 1 ,
m m m m

R R R R
B N N N NP ,

2 22 * *22 * 2* 2 *2 * 2
N

2
N N NN N
2

1 1 11 1 1
2
1 1 11 1 1
2

m m mNm m mm mN Nm mm1 1 11 1 11 1 NNmNmNm
 (5.31) 

where * indicates the complex conjugate, then solving the equation 

 1
M M A BK C P P , (5.32) 

and extracting the desired MK  from the left hand side. 

(5) Calculate real mode shapes and natural frequencies via eigenvalue 

decomposition of MK ; i.e., by solving 

 2R R
M n n nK . (5.33) 
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(6) Transform shapes back to full measurement coordinates using the 

transformation matrix and the relationship 

 Fuellekrug R
mT . (5.34) 

(7) The Fuellekrug real normal natural frequencies and mode shapes are then 

Fuellekrug
n n  and  Fuellekrug , respectively. 

When m dN N  the singular value decomposition coordinate transform to and 

from a reduced degree-of-freedom set is not required since m dN N . The solution 

therefore proceeds as follows: 

(1) Rotate mode shapes so largest component of each shape is scaled to 1 0i  

using Eq. (5.22). 

(2) Solve for the mass-modified stiffness matrix, MK  by defining  

 
1 1

* *
1 1 1 1

,m m

m m m m

R R R R
N N

A R R R R
N N N N

P

RR
NNNNN

,
* *R * *RR * RRR RR

m m mm m m1 1 1 Nm m mm m1 1 11 1 1 N N NN Nm m
RRR

mmNmNNm

 (5.35) 

 
2 22 * 2 *

1 1 1 1 ,
m m m m

R R R R
B N N N NP ,

2 22 * *22 * 2* 2 *2 * 2
N

2
N N NN N
2

1 1 11 1 1
2
1 1 11 1 1
2

m m mNm m mm mN Nm mm1 1 11 1 11 1 NNmNmNm
 (5.36) 

solving the equation 

 1
M M A BK C P P , (5.37) 

and extracting the desired MK  from the left hand side. 
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(3) Calculate real mode shapes and natural frequencies via eigenvalue 

decomposition of MK ; i.e., by solving 

 2R R
M n n nK . (5.38) 

The case of m dN N  is treated by a combination of the second Fuellekrug 

solution and the rotated-real method from Section 5.4.3.1. The procedure is as follows: 

(1) Separate the modes into a group of the first dN  modes and a group of all 

that remain; 

(2) Perform the steps of the second Fuellekrug method on the first group; 

(3) Perform the rotated-real method on the remaining group; 

(4) Recombine the modes into the full set of N  real mode shapes and natural 

frequencies. 

 Comparative Study for Reduced Coordinate Damping Methods 5.5

Performance of the approximate proportional damping methods presented in 

Section 5.4 is studied in this section using a composite sandwich plate model with core 

damage. The primary interests are to compare the direct modal and extended Rayleigh 

methods and to study the loss of accuracy associated with calculating the damping 

matrices in reduced coordinates as opposed to full coordinates.   
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5.5.1 Analytical Sandwich Model and Simulated Experimental Data 

The damage case 1 composite sandwich plate model from Section 5.4 was 

implemented with the material properties in Table 5-5. Reference frequency response 

functions were calculated using global stiffness matrix proportional Rayleigh damping 

with α = 10-6 and β = 0 in the plate-normal Z-direction from 100 Hz to 1750 Hz at each of 

16 top-surface measurement points. Figure 5-21 shows the model with analysis degrees-

of-freedom and the damaged core region. Modal parameter estimation of the reference 

data was performed using the commercial package ME’scopeVES [5-3] to give natural 

 

 

Table 5-5: Finite element model material properties for the damping methods study model. 

Laminates (3D orthotropic)  Core (3D anisotropic) 
Property Healthy Region  Property Healthy 

Region 
Damaged 

Region 

E11 (Pa) 1.4215×1011  G11 (Pa) 100.00 100.00 

E22 (Pa) 1.4953×1010  G22 (Pa) 100.00 100.00 

G12 (Pa) 1.3828×109  G33 (Pa) 1.3800×108 1.3800×108 

ν12 3.2039×10-6  G44 (Pa) 100.00 100.00 

G13 (Pa) 4.5970×109  G55 (Pa) 8.3639×107 2.6763×107 

G23 (Pa) 3.3000×109  G66 (Pa) 2.9190×108 2.9425×107 

ρ (g/cm3) 1.7391  Gij, i ≠ j (Pa) 0 0 

η  0  ρ (g/cm3) 0.24552 0.24552 

α 1×10-6  η  0 0 

β 0  α 1×10-6 1×10-6 

   β 0 0 



www.manaraa.com

289 

 

 

Figure 5-21: Composite sandwich plate mesh showing Nd = 16 analysis degrees-of-freedom on the top 
laminate (degrees-of-freedom are normal to the plate) and the damaged region of the core. 

 

frequencies, mode shapes, and modal damping ratios for the first 18 modes, as presented 

in Table 5-6. Although the underlying damping is proportional, and thus modal data 

should be real-valued, the natural frequencies and mode shapes are complex in the third 

significant figure (i.e., two-to-three orders of magnitude between real and imaginary 

parts). This is a result of the curve-fitting based modal parameter estimation  

process being imperfect, even for noise-free analytical data. It should be noted that global 

stiffness matrix proportional damping was chosen for the reference data so that error 

could be attributed to the degree-of-freedom reduction process and fidelity of the 

approximate damping methods without additional error from assuming proportional 

damping for a non-proportionally damped system. 
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Table 5-6: Modal parameter summary of the analytical reference system. 

Mode Mode Shape Frequency (Hz) Damping Ratio 

1 1-1 -0.109 - 186i 0.06% 
2 2-0 -0.232 - 272i 0.09% 
3 0-2 -0.380 - 348i 0.11% 
4 2-1 -0.640 - 451i 0.14% 
5 1-2 -0.694 - 470i 0.15% 
6 3-0 -1.67 - 730i 0.23% 
7 2-2 -1.96 - 790i 0.25% 
8 3-1 -2.20 - 836i 0.26% 
9 0-3 -2.23 - 841i 0.27% 

10 1-3 -2.93 - 965i 0.30% 
11 3-2 -4.29 - 1168i 0.37% 
12 2-3 -4.64 - 1231i 0.38% 
13 4-0 -5.65 - 1342i 0.42% 
14 3-3 -6.32 - 1417i 0.45% 
15 4-1 -7.55 - 1549i 0.49% 
16 4-2 -7.86 - 1579i 0.50% 
17 0-4 -8.40 - 1630i 0.52% 
18 1-4 -9.04 - 1696i 0.53% 

 

5.5.2 Damping Study Results  

The specific proportional viscous damping methods under study are named in 

Table 5-7 along with primary equation references from Section 5.4.2. The damping 

methods were implemented using the rotated-real complex-to-real modal transformation 

method, where required (i.e., for the direct modal and extended Rayleigh method cases, 

since the Rayleigh methods were implemented using known proportionality constants). 

The rotated-real method was selected based on the comparison in Appendix C. Frequency 

response functions were then generated from the reduced coordinate system for each type  
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Table 5-7: Damping Method Study Cases. 

Damping Method 

Calculation Domain 
Primary 
Equation 
Reference 

Full Degree-of-
Freedom Set  

(f-DOF) 

Measurement 
Degree-of-Freedom 

Set (m-DOF) 
Rayleigh Damping  
in f-DOF (Baseline) X  (5.5) 

Rayleigh Damping  
in m-DOF  X (5.8) 

Direct Modal Damping 
in f-DOF X  (5.18) 

Direct Modal Damping 
in m-DOF  X (5.19) 

Extended Rayleigh 
Damping in f-DOF X  (5.20) 

Extended Rayleigh 
Damping in m-DOF  X (5.21) 

 

of approximate damping and the frequency response functions from the five approximate 

cases compared to those of the baseline full degree-of-freedom Rayleigh method. 

The comparison is presented visually through plots showing the driving point 

frequency response functions and the following three frequency-based metrics, where CC  

is the baseline damping case, Ĉ  is the approximate damping matrix for the case being 

evaluated, and angled brackets ...  denote the mean absolute value in each case. 

 Mean absolute value frequency response function difference: 

 
1

1ˆ ˆ( , ) ( , ) ( , )
dN

k k i k i
id

a C a C a C
N k i, )))), ), )), ) . (5.39) 

 Mean absolute value residual force vector: 

 
1

1ˆ ˆ( , ) ( , ) ( , )
dN

k k i k i
id

R C f Z C a C
N k i

ˆ
k i, ) ()) () ((, ) (, . (5.40) 
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 Average non-zero damping matrix value: 

 
1

1ˆ ˆ( ) ( )
elsN NonZero

k k llels
C C

N
, (5.41) 

where ˆ ( )
NonZero

k l
C  is the lth non-zero element of damping matrix ˆ ( )kC  

and elsN  is the number of non-zero elements of ˆ ( )kC . 

Driving point frequency response functions from each damping method are 

compared to the reference case in Figure 5-22 with average frequency response function 

difference in Figure 5-23. It can be seen that both direct modal damping methods give 

noticeable error with the direct modal m-DOF method producing too much damping and 

the direct modal f-DOF method producing too little damping as frequency increases. The 

other methods appear to overlap with the reference data well; however, inspection of the 

mean frequency response function difference in Figure 5-23 shows that there is some 

error in all of the cases, with the Rayleigh f-DOF method error representing the level of 

numerical precision. The extended Rayleigh f-DOF method performs the best, with error 

levels averaging approximately -40 dB compared to frequency response function levels 

of approximate 40 dB.  

The error level trends can be inspected in more detail in Figure 5-24, which gives 

the residual force vector calculated between the reference frequency response function 

and each of the damping method dynamic stiffness matrices, plotted in decibels (dB). 

Several observations can be made. Most importantly, the extended Rayleigh f-DOF 

method produces far lower residual force through the mid and high frequencies than the  
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Figure 5-22: Acceleration domain driving point frequency response functions for five damping 
method cases compared to the exact analytical case and measured reference data. 

 

 

Figure 5-23: Frequency response function difference, mean absolute value over degree-of-freedom, 
for five damping cases compared to exact analytical case. 
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Figure 5-24: Frequency response residual force vector, mean absolute value over degree-of-freedom, 
for five damping cases compared to exact analytical case. 

 

other methods, while still producing low error at low frequency. Additionally, the 

Rayleigh m-DOF method produces almost zero error at low frequencies, although the 

error grows through higher frequencies. This indicates that if proportional damping is a 

fair approximation for the system in question and only low modes are required, the 

proportional damping can be added in m-DOF space after reducing using the undamped 

dynamic stiffness matrix.  

Another observation can be seen in the large spikes that develop in the higher 

frequencies for the m-DOF Rayleigh modal damping case. These spikes correspond to 

poles of the inverse slave degree-of-freedom portion of the partitioned dynamic stiffness 

matrix, 1( , )k ssZ r , which is required to form the reduction transformation matrix in Eq. 
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(3.26). It can thus be seen that the m-DOF Rayleigh modal damping method can be used 

with reasonably low error as long as all frequencies are below the lowest pole of 

1( , )k ssZ r .  

A final qualitative comparison of the damping methods can be seeing in Figure 

5-25, which gives a measure of the magnitude of each damping matrix with respect to 

frequency. The magnitude is found by averaging the absolute value of non-zero elements 

of each resulting m-DOF damping matrix, at each frequency, and thus essentially shows 

how each damping matrix varies over frequency, but does not give a meaningful  

 

 

Figure 5-25: Mean absolute value of non-zero reduced degree-of-freedom damping matrix elements 
for five damping cases compared to exact analytical case. 
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magnitude comparison between methods. There are large spikes in most of the magnitude 

functions which can be shown to again correspond to the poles of 1( , )k ssZ r . The 

exception is the m-DOF direct modal damping method which is created using the m-DOF 

mode shape matrix and thus doesn’t require additional matrix reduction with the result 

that it is the same for each frequency (and as a result, very inaccurate). The Rayleigh f-

DOF and extended Rayleigh f-DOF cases have very similar matrix values which further 

supports the observation that the extended Rayleigh damping method most accurately 

models the correct damping for this system. 

5.5.3 Discussion 

Based on the presented comparison study, using analytically simulated reference 

data generated from an experimentally correlated finite element model with known global 

stiffness matrix proportional damping and no noise, it can be seen that Extended Rayleigh 

modal damping formulated in the full analytical f-DOF degree-of-freedom space gives 

the best results by every metric. The presented cases simulated a real-world structure and 

damping case, with modal parameter estimation performed using commercial software 

and the reference data and resulting complex modal parameters used as if they were 

measured. This conclusion is therefore meaningful for real-world implementation despite 

being drawn from analytical study. Another interesting observation is that the 

approximate m-DOF methods can potentially produce reasonable results for the lowest 

frequencies, with the upper frequency limit imposed by the lowest frequency poles of the 
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reduction transformation matrix related quantity 1( , )k ssZ r . It can also be seen that the 

direct modal damping method does not perform acceptably in any case. If all degrees-of-

freedom could be measured, it can be assumed that this method would give better results; 

however, in any real-world situation that is not possible. The Rayleigh modal damping 

formulations on the other hand produce reasonable results, even with the 99.2% degree-

of-freedom reduction studied.  

More accurate versions of the modal damping methods can potentially be reached 

through a two-step method, where approximate proportional viscous damping is fitted as 

well as possible, and then the approximately damped dynamic stiffness matrix used to 

expand mode shapes in place of the undamped dynamic stiffness matrix. If the initial 

proportional viscous damping fit is good then the extended Rayleigh modal damping 

method could potentially approach the exact damping case (as may the direct modal 

damping method in the case of Nd = Nmodes).  

The material contained in Chapter 5 was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, and Prof. Joel Conte. The dissertation author 

was the primary investigator and author of this work. 
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6 EXPERIMENTAL IMPLEMENTATION AND VALIDATION 

The current damage identification algorithm is now extended to experimental 

application and validated experimentally on a composite plate test-piece. Techniques for 

model correlation techniques are described first, followed by details of additional criteria 

for experimental frequency line selection. The full recommended process for 

experimental model correlation and damage identification is then outlined. The 

subsequent experimental validation includes details of the test-piece, test setup, and 

model; details of initial model correlation; and detailed treatment of experimental damage 

identification.  

 Baseline Finite Element Model Correlation 6.1

Prior to damage identification, the baseline finite element model must be 

correlated to baseline (healthy) data. This step decreases initial modeling error and 

increases the accuracy of subsequent damage identification. The basic concept of 

correlation is to optimize selected model parameters so that error between the analytical 

model response and healthy reference data is minimized. For the current implementation, 

any parameters that affect the vibration response of the analytical model can be chosen 

for correlation, examples being material stiffnesses, density, laminate ply angles, and 

spring stiffnesses. The error to be minimized can likewise be defined based on a range of 
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vibration criteria. Modal parameters provide a convenient basis for correlation error; 

however, as will be discussed in more detail below, it is recommended to perform final 

correlation with respect to frequency domain criteria (e.g., frequency response function 

error) since the correlated model will be used subsequently for damage identification in 

the frequency domain.   

Common sense dictates that the parameter values being correlated should be kept 

as physically meaningful as possible. In some cases, however, it may be desirable to 

update parameters which are known to be physically accurate in the uncorrelated model 

in order to counter non-parametric inadequacies in the modeling methodology. An 

example of non-parametric modeling methodology error is increasing levels of natural 

frequency error as a model’s discretization is coarsened relative to the modal 

wavelengths. This behavior is not related to accuracy of material properties but stems 

from the basic finite element method assumption of geometrically idealized element 

shape functions. The resulting error in natural frequency can potentially be corrected for 

the purposes of damage identification by accepting a baseline value of global density or 

stiffness which is known to not be physically accurate to the material but which 

nonetheless increases the fidelity of model to data without overly corrupting subsequent 

damage identification.  

The desire to increase overall fidelity to the baseline data set, however, must be 

balanced against the desire to have a correlated model which will update accurately to the 

damage state. One approach to reducing modeling error while keeping parameters 
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realistic is to update high sensitivity global parameters first (along with parameters 

related to connections, if applicable), then perform subsequent correlations with 

increasingly larger sets of variables. This approach serves to first anchor major 

parameters after which updating additional parameters helps fine-tune the correlation 

with smaller changes overall. Before progressing to more refined correlation the updated 

parameters at each step can be inspected to ensure the values are still in an acceptable 

range. 

Another consideration when choosing a correlation technique or series of 

techniques is how the parameter variability will be defined prior to performing statistical 

damage identification. It is recommended here to use one or more of the deterministic 

correlation methods to remove the bulk of the methodology based modeling error, and 

then to use the statistical method for final correlation in order to provide a set of damage 

parameter initial variability values that can be referenced during damage identification 

setup (Note: for detailed analysis of the definition and interpretation of prior and 

posterior variability on the experimental plate see Section 6.4.4.4). 

Four analytical model correlation methods—which can be used independently or 

consecutively—are now presented and discussed: 

(1) Deterministic least-squares minimization of natural frequencies (a.k.a., 

modal parameter based pseudo Newton-Raphson method); 
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(2) Deterministic least-squares minimization of frequency response functions 

(a.k.a., frequency response function based pseudo Newton-Raphson 

method); 

(3) Deterministic least-squares minimization of residual force vectors (a.k.a., 

residual force vector based pseudo Newton-Raphson method); 

(4) The current frequency response function based statistical damage 

identification algorithm applied to correlation; 

The first three methods are deterministic least-squares optimization routines in the 

Newton-Raphson style which operate on either modal parameters, frequency response 

functions, or residual force vectors, respectively. The fourth method is an application of 

the current damage identification algorithm where primarily global parameters are 

updated with heavy regularization (low initial parameter variance) to promote a realistic 

solution.  

 

Table 6-1: Summary of model correlation methods 

Method 

Basis Statistical 
Optimization 

Regularization 
Modal 

Parameters 

Frequency 
Response 
Functions 

Residual 
Force 

Vectors 
Modal Parameter Based Pseudo Newton-

Raphson X   No 

Frequency Response Function Based 
Pseudo Newton-Raphson  X  No 

Residual Force Vector Based Pseudo 
Newton-Raphson   X No 

Current Algorithm Applied to 
Correlation   X Yes 
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6.1.1 Modal Parameter Based Pseudo Newton-Raphson 

If modal parameters are available, one convenient correlation approach is to 

update major parameters (e.g., global stiffness and/or density) based on minimizing the 

difference between measured and analytical natural frequencies. A simple but effective 

optimization algorithm for implementing this correlation technique is least-squares 

minimization based on the classical Newton-Raphson method, similar to the algorithm 

outlined in Ref [6-1]. Implementation of the algorithm for updating Nr parameters is as 

follows. 

(1) Calculate a vector of differences between Nm experimental natural 

frequencies, nn , and the Nm  analytical frequencies for iteration i, n i
, 

comparing mode shapes if necessary to ensure correct frequencies are in the 

correct order: 

 ( )n n n ii r(n n(n nnn . (6.1) 

(2) Generate the natural frequency sensitivity matrix for the pth parameter using 

finite difference with perturbation Δ: 

 
( ) ( )n p n pn i i

p i

r r

r
. (6.2) 

(3) Stack the sensitivity vectors side-by-side into the complete natural 

frequency sensitivity matrix:  
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1 2 m

n n n n

Ni i i i
r r r r

nn

rNrN
. (6.3) 

(4) Use the pseudo-inverse least-squares solution for the general case of Nr not 

equal to Nm to generate the updated parameter set (the proper Newton-

Raphson solution uses a direct matrix inverse to solve this equation, 

requiring a square sensitivity matrix and therefore limiting the number of 

correlation modes to the number of parameters being updated):  

 
1

n
n ii i

i
r r

r
. (6.4) 

(5) Check convergence and either exit the loop or increment i and continue with 

the next iteration. 

The pseudo Newton-Raphson natural frequency method has the advantage of 

avoiding compatibility issues related to units and the number of degrees-of-freedom 

between the measured data and analytical model by reducing the comparison to natural 

frequencies. Since natural frequencies are relatively insensitive to parameter changes, the 

update will also tend to be well behaved, smooth, and unique, so long as there are at least 

as many frequencies as parameters (i.e., so long as the problem is not underdetermined). 

On the other hand, this simplicity is limiting since damping cannot be correlated, the 

number of parameters is limited to the number of available natural frequencies, and 

modal parameters need to be available. Also, the curve-fitting process required to derive 
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modal parameters can potentially add another layer of error to the system, although it 

should be small in the case of natural frequencies. Note that an iteration step limit can be 

applied to step (3) to help with convergence if required (depending on the initial 

discrepancy size and level of parameter nonlinearity). 

6.1.2 Frequency Response Function Based Pseudo Newton-Raphson 

If modal parameters are not available, and/or if damping needs to be correlated, a 

similar algorithm can be implemented using the difference between frequency response 

functions as follows: 

(1) For the ith iteration, calculate a vector of differences between batch-stacked 

experimental and current analytical frequency response functions at Nω 

frequency lines using 

 ˆ( )i ia a a r̂( )ˆ( )a((a , (6.5) 

where ia  is the vector of differences, aa  is the vector of experimental 

frequency response functions, and ˆ( ) ia r  is the vector of analytical 

frequency response functions. 

(2) Generate the batch-stacked frequency response function sensitivity vector 

using Eq. (3.150) for the pth parameter, as  

 1( ) ( )
i

p pi i

a r Z r
Z a

r r
aaa , (6.6) 
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where 
iZ  is the batch-stacked dynamic stiffness matrix at iteration i and 

dynamic stiffness matrix sensitivity can be approximated using finite 

difference for perturbation Δ as 

 
( ) ( )( ) p p

p

Z r Z rZ r
r

. (6.7) 

(3) Calculate the full frequency response function sensitivity matrix by stacking 

the individual parameter sensitivity vectors side-by-side into the complete 

matrix:  

 
1 2

( ) ( ) ( )

pNi i i i

a a r a r a r
r r r r

)((( )((( )( )( )((
rNrN

. (6.8) 

(4) Use the pseudo-inverse least-squares solution to generate the updated 

parameter set:  

 1i i i
i

a
r r a

r
. (6.9) 

(5) Check convergence using averaged parameter change and either exit the 

loop or increment i and continue with next iteration. 

As with the modal parameters version, this unregularized algorithm tends to work 

best with a small number of global parameters so that the parameter sensitivities are 

strongly defined and the optimization is more stable. Similarly to the main damage 

detection algorithm, frequency line selection must be performed prior to beginning the 
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update. It should be noted that the algorithm is presented in its most simple form above, 

and implementation complications arising from reduced degree-of-freedom measurement 

set and the desired inclusion of measured modal damping can be solved using the 

methods developed in the preceding chapters for the main damage identification 

algorithm.  

6.1.3 Residual Force Vector Based Pseudo Newton-Raphson 

A similar algorithm can be alternatively formed to minimize residual force 

vectors through the pseudo Newton Raphson approach as follows: 

(1) For the ith iteration, calculate the batch-stacked  vector of residual force 

vectors iR  at Nω frequency lines using 

 ( )iiR i Z r aa , (6.10) 

where ( )iZ r  is the dynamic stiffness matrix and aa  is the vector of 

experimental frequency response functions. 

(2) Generate the batch-stacked residual force vector sensitivity vector using Eq. 

(3.115) for the pth parameter, as  

 
{ }

( )

i

i
i

r

Z r
N a

r
( )Z (Z )Z (( )Z (ZZZ

a
( )i( )

aaaaa
{ }i{ }rr

, (6.11) 
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where the batch-stacked dynamic stiffness matrix sensitivity 
{ }

( )

i

i

r

Z r
r
( )Z (Z ( )Z (ZZ ( )i( )

{ }i{ }rr
 

can be built from the dynamic stiffness matrix sensitivity for each of the pth  

parameters using finite difference for perturbation Δ as 

 
ˆ ˆ( ) ( )( )

ˆ
p p

p

Z r Z rZ r
r

. (6.12) 

(3) Use the pseudo-inverse least-squares solution to generate the updated 

parameter set:  

 1i i i ir r N R . (6.13) 

(4) Check convergence using averaged parameter change and either exit the 

loop or increment i and continue with next iteration. 

6.1.4 Statistical Model Correlation Using the Current Algorithm 

The current statistical frequency response function based damage identification 

algorithm can additionally be used for model correlation when configured properly, 

allowing robust correlation in the frequency domain. The statistical basis of the algorithm 

presents two distinct benefits to correlation. First, the statistical output gives variability 

values for parameters which would otherwise be missing. Second, the statistical 

formulation provides regularization during optimization, meaning that the algorithm will 

be stable for larger numbers of concurrent update parameters and parameters with a wider 
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range of sensitivities—correlation goals which will often cause the previously described 

deterministic techniques to fail. It is recommended to perform final correlation using this 

algorithm. 

Implementation of the current algorithm for correlation is similar to the 

implementation for damage identification. The main exception is that the primary outputs 

are real-valued healthy parameter values, parameter variability, and the healthy correlated 

model instead of damage factor values, damage factor variability, and the damage-

correlated model. Additionally, the following algorithm configuration options should be 

considered: 

 The selection of global parameters as opposed to local element parameters for 

bulk material structures or subsystems will help keep the correlation more 

physically meaningful. 

 Using a large number of widely distributed frequency lines will help increase 

correlation fidelity. 

 Relatively tight regularization (i.e., starting with higher assumed parameter 

variability values) will help keep values from varying too far from their physically 

realistic values. 

 Multiple consecutive runs may increase the final fidelity of correlation while 

keeping parameter values physically meaningful. 
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 Damage Identification Frequency Selection Based on Modal Correlation 6.2

During frequency line selection for damage identification, an additional and 

optional criterion based on modal correlation in the healthy model can be established to 

further decrease post-correlation modeling error and potentially improve damage 

identification accuracy. In an ideal situation, correlation would produce an updated 

healthy model with zero effective modeling error. However, in experimental practice the 

correlated model will not be perfect and it is desirable to minimize as far as possible the 

amount of modeling error that actually propagates into the damage identification step.  

The proposed method involves selecting the subset of modes with the highest 

correlation to the healthy data set and then selecting the update frequencies to be 

clustered around those same modes in the damaged data set. The selection can be based 

on one of three criteria: 

(1) Minimum error in natural frequency; 

(2) Minimum error in mode shapes; 

(3) A combined metric that ranks the modes in terms of both error in natural 

frequency and error in mode shapes and selects the subset of modes with the 

lowest combined ranking, choosing the lowest of available modes in the 

event of equal combined ranking.  

The mode shape error criterion could be judged based on either cross-correlation 

or modal assurance criterion, and in the current studies the modal assurance criterion 
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option is chosen for simplicity since it requires only the two shape vectors for each mode 

and no mass matrix. After the modes are selected based on healthy correlation, the subset 

is passed to the mode based frequency selection routine described in Section 4.1. 

 Complete Experimental Correlation and Damage Identification Process 6.3

The complete experimental damage identification process includes vibration 

testing, model correlation, and damage identification as summarized in Figure 6-1.  

Details of the process steps are as follows: 

(1) Perform a vibration test on the structure in its healthy or baseline state to 

produce frequency response and correlation functions. Perform modal 

parameter estimation to the frequency response functions to produce healthy 

natural frequencies, mode shapes, and modal damping ratios if possible. 

(2) Correlate the baseline analytical model to the healthy measurement set to 

minimize modeling error and establish healthy baseline parameters and 

parameter uncertainty. The following multi-step correlation procedure is 

recommended, including one or both of the optional non-statistical initial 

correlation methods described in Section 6.1: 

a) (Optional) If modal parameters are available, correlate the original 

finite element model to the healthy modal data using the pseudo  
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Figure 6-1: Flowchart of the full correlation and damage identification process. 

 

Newton-Raphson natural frequency method. The correlation should be 

performed with a small number of global parameters and natural 

frequencies over the expected damage identification frequency range. 
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b) (Optional) If modal parameters are not available, the frequency 

response function damping model requires correlation, or large 

frequency response function correlation changes are required, perform 

correlation using the pseudo Newton-Raphson frequency response 

function or residual force method. The correlation should be 

performed with a small number of global parameters and natural 

frequencies over the expected damage identification frequency range. 

Additional damping parameters can be included if desired. 

c) Perform one or more correlation runs using the current statistical 

damage identification algorithm. These runs may be performed with a 

large number of parameters in order to fine-tune the model in the 

frequency domain if desired. 

(3) After the structure has sustained damage, perform a vibration test on the 

structure in its damaged state to produce damaged reference frequency 

response and correlation functions. Perform modal parameter estimation to 

the frequency response functions to produce damaged natural frequencies, 

mode shapes, and modal damping ratios if possible. 

(4) By referencing the analytical model, perform damage parameter selection 

using any available damage location information to establish an initial 

parameter set for damage identification. Select prior parameter variance 

values based on correlated values and knowledge of expected damage state. 
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(5) Perform damage identification using the current statistical frequency domain 

algorithm to produce updated damage factor values, estimates of damage 

factor uncertainty, and the damage correlated finite element model. The 

procedure can be optionally extended iteratively by using the results to 

select a new and likely smaller set of damage parameters at each step, 

thereby zeroing in on the damage. This approach is essentially provides 

coupled damage location and damage identification, and may help overcome 

modeling error and improve final damage identification results. 

It should be noted that measured modal data will generally be complex because of 

damping in the structure. Equivalent normal modal information can be derived using the 

methods outlined in Section 5.4.3 where required. 

 Experimental Validation on a Composite Plate 6.4

Experimental validation of the damage identification algorithm on a composite 

laminate plate with induced damage is presented. The composite plate test-piece was 

manufactured from a commercially produced stock laminate plate and vibration tested 

using the roving hammer impact method to produce healthy reference data. A finite 

element model of the plate was constructed and correlated to the baseline data. Damage 

was induced into a small region of the structure test-piece and the plate was vibration 

tested a second time to produce damaged reference data. The finite element model and 
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damaged data sets were then used to validate the damage identification algorithm and 

explore performance. 

6.4.1 Baseline System Description 

All experimental validation was performed using a cross-ply graphite-epoxy 

composite plate with 12 plies arranged in the layup [(0/90)3]S. The test-piece was cut 

using a wet diamond tile-saw from a stock plate with product name 0.060” thickness 

Carbon Fiber Plate, 12” x 48” sheet purchased from CST Composites [6-2]. The plate 

was then stored for several months in the air-conditioned laboratory where all further 

testing was conducted. The completed test-piece plate was measured to be nominally 

square with edge lengths of 0.2995±0.001 m. Mass was measured using a digital scale to 

be 0.231 kg in the plate’s baseline vibration testing configuration. Thickness was 

measured using calipers to a thickness of 0.00165±0.001 m. 

Vibration testing was performed using a Dactron Focus 24-bit signal analyzer and 

Lenovo T64s 64-bit laptop computer with RT Pro v6.21 data acquisition software [6-3]. 

The test-piece was suspended vertically during testing using lengths of thin surgical 

tubing attached to the plate in two locations along the top edge via fishing line and small 

pieces of masking tape to approximate free-free boundary conditions with minimal 

additional mass-loading as shown in Figure 6-2. The plate was excited using roving 

impacts from a modal force-hammer (PCB model 086E80 miniature instrumented 

impulse hammer, range 0–50 lbf) at 36 locations arranged in an evenly spaced 6 x 6 grid 
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of pre-defined measurement points. Acceleration response was measured at two locations 

(primary and back-up) using tear-drop AC accelerometers (PCB model 352C22/AC 

miniature 10 mV/g ceramic shear ICP accelerometer, mass 0.5 gram). The force input 

and acceleration response sensors were connected to the signal analyzer through a PCB 

481A series signal conditioning unit. A schematic of the vibration testing setup showing 

measurement locations is given in Figure 6-3. 

 

 

  

Figure 6-2: Experimental vibration testing setup for the composite plate test-piece.  
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For each measurement point, the data acquisition system acquired and stored 

frequency response functions and frequency coherence functions at 3600 frequency lines 

from 0 Hz to 3218 Hz as the average of 5 successful hammer hits through the following 

standard process: (1) acquire times time series from the hammer force sensor and each 

accelerometer; (2) apply a force exponential window, predefined to bring each time series 

to approximately zero by the end of the acquired signal; (3) calculate auto power 

spectrum estimates for each time series and cross power spectrum estimates between the  

 

Figure 6-3: Vibration testing setup schematic from plate front showing hammer impact locations 
(plate front side) and primary and secondary response locations (plate back side).  
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force time series and each acceleration time series; (4) calculate the H1 transfer function 

and coherence function estimates between the force input and each acceleration response; 

and (5) average the current transfer function and coherence function estimate into the 

running group average. The output after each complete vibration test was 36 frequency 

response transfer functions and 36 coherence functions for each response location. The 

driving point frequencies corresponding to the primary accelerometer location (bottom 

right corner of the plate) are given in Figure 6-4 and Figure 6-5. 

Modal parameter estimation was performed on the baseline frequency response 

functions using ME’scopeVES v5.1 [6-4] with the modal peaks modal indicator function 

and ortho-polynomial curve-fitting options. Mode shapes, natural frequencies, and modal 

damping ratios for the first 12 modes are given in Table 6-2 along with a description of 

mode type. Since the test-piece is a plane free-free plate the modes follow a predicable 

pattern and can be described by the number of vertical and hozizontal node lines 

following Figure 6-6. Visual representations of the mode shapes are given in Figure 6-7. 

It can be seen in Table 6-2 that damping is generally higher for the torsion modes than for 

the bending modes. This occurs because torsion in [(0/90)N]S cross-ply laminates is 

dominated by matrix shearing while bending is dominated by fiber deformation. This 

distinction decreases with increasing modal frequuency as the wavelength decreases and 

bending involves increasing amounts of matrix shear. 
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Figure 6-4: Driving point frequency response function from the baseline test-piece: (a) magnitude, 
(b) coherence. 
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Figure 6-5: Driving point frequency response function from the baseline test-piece: (a) real 
component, (b) imaginary component. 

 

0 50 100 150 200 250 300 350 400 450 500
-3000

-2000

-1000

0

1000

2000

3000
Experimental Driving Point Frequency Response Function

R
ea

l C
om

po
ne

nt

Frequency (Hz)

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Experimental Driving Point Frequency Response Function

Im
ag

in
ar

y 
C

om
po

ne
nt

Frequency (Hz)

 

 

(a) 

(b) 



www.manaraa.com

321 

 

 

Table 6-2: Modal summary of the experimental baseline system 

Mode Mode Type Mode Shape Frequency (Hz) Damping Ratio 

1 Torsion 1-1 37.7 0.78% 
2 Bending 0-2 109.9 0.24% 
3 Bending-Torsion 1-2 131.7 0.68% 
4 Bending 2-0 137.6 0.17% 
5 Bending-Torsion 2-1 155.1 0.41% 
6 Torsion 2-2 227.5 0.65% 
7 Bending 0-3 302.1 0.20% 
8 Bending-Torsion 1-3 318.4 0.49% 
9 Bending 3-0 378.1 0.51% 
10 Bending-Torsion 3-1 388.6 0.61% 
11 Bending-Torsion 2-3 398.0 0.27% 
12 Bending-Torsion 3-2 446.6 0.34% 

 

 

 

 

Figure 6-6: Examples of the mode shape description scheme based on node-lines 
(Number of vertical node lines – Number of horizontal node lines). 
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Figure 6-7: Experimental mode shapes measured from baseline plate (white equals a scaled mode 
shape value of 1, black equals a value of -1, and medium grey equals a value of zero). 

 

 

A structural finite element model of the test-piece plate was created for MSC. 

NASTRAN [6-5] (see Appendix D for bulk data file). The structure was discretized into 

400 equally sized square plate elements in a 20 x 20 grid producing a 21 × 21 grid of 

regularly spaced nodes for a total of 2646 degrees-of-freedom. This mesh was chosen to 

keep the total number of degrees-of-freedom relatively low while still leaving adequate 

resolution for capturing the damage. Additionally, the selected mesh provided a close 

correspondence between the 36 measurement points and node locations. shows the finite 

element model structure in translucent configuration, aligned as if viewing the test-piece 

in vibration testing configuration (x-axis horizontal, y-axis vertical). Nodes corresponding 

to the vibration testing measurement points are shown with small squares, and the 0° 

fiber direction, aligned with the global x-axis, can be seen as an arrow centered on each 

element and corresponding to the local element coordinate system 0° direction. The  

Mode 1

 

 
Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9 Mode 10 Mode 11 Mode 12
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Figure 6-8: Composite plate finite element model (nodes corresponding to measurement points 
indicated with yellow squares on nodes).  

 

elements were modeled using CQUAD4 plates with PCOMP laminate property 

definitions and MAT8 material definitions, with all 12 plies through the thickness using 

the same material definition for each element. The accelerometers were additionally 

modeled as 0.5 gram point masses, centered on nodes 177 and 421.  

Initial ply level material properties were derived from static material coupon 

testing of the bulk laminate by fellow student Eduardo Velazquez and are presented along 
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with correlated material properties in Table 6-3 (table located in Section 6.4.2.2). The 

baseline ply material properties were derived by manually adjusting values in the 

NASTRAN laminate builder until bulk cross-ply laminate stiffness values matched the 

measured coupon values and so are only approximations of their true values (i.e., as 

would have been derived from unidirectional laminate tensile coupons, had they been 

available). Because of the availability of modal damping ratios, damping was modeled in 

the plate using the full-coordinates extended Rayleigh method described in Section 

5.4.2.3. This method matches measured modal damping ratios by creating a superposition 

of scaled Rayleigh damping matrices, one for each mode. Since the extended Rayleigh 

method completely matches the measured damping (within the limits of proportional 

damping) it was not attempted to additionally define and correlate material damping in 

the finite element model.  

Figure 6-9 shows natural frequencies and mode shapes from the uncorrelated 

finite element model response. The plate shows expected mode shape response, with 

modes 10 and 11 deviating slightly from the clean node-line pattern. Figure 6-10 through 

Figure 6-12 additionally show comparisons to the measured baseline data, with natural 

frequencies in Figure 6-10, relative natural frequency error in Figure 6-11, and modal 

assurance criterion diagonal values in Figure 6-12. It can be seen that in the uncorrelated 

baseline state there is a regular natural frequency error up to 4.9%, with most modes 

deviating by less than ±2%. The modal assurance criterion is greater than 0.97 for all  
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Mode 1: 39.5 Hz 

 
 

Mode 2: 108.8 Hz 

 
 

Mode 3: 133.5 Hz 

 
 

Mode 4: 137.5 Hz 

 
 

Mode 5: 157.5 Hz 

 
 

Mode 6: 234.2 Hz 

 
 

Mode 7: 298.1 Hz 

 
 

Mode 8: 317.8 Hz 

 
 

Mode 9: 375.1 Hz 

 
 

Mode 10: 389.5 Hz 

 
 

Mode 11: 400.3 Hz 

 
 

Mode 12: 450.5 Hz 

 
 

Figure 6-9: Natural frequencies and mode shapes from the uncorrelated finite element model (the 
white dot near the center of each picture is one of the two accelerometer mass-elements). 
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Figure 6-10: Natural frequencies from the uncorrelated baseline finite element model compared to 
those from the measured healthy data set. 

 

 

Figure 6-11: Mean relative error in natural frequencies between the uncorrelated baseline finite 
element model and measured healthy data set (analytical set lower than the baseline reference set). 
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Figure 6-12: Modal assurance criterion diagonal values calculated between the uncorrelated finite 
element model and measured baseline data. 

 

modes except for 9, 10 and 11, which have modal assurance criterion values of 0.95, 0.91 

and 0.91, respectively. This indicates excellent mode shape correlation overall with small 

but non-negligible error in modes 10 and 11. The visual mode shape representations in 

Figure 6-7 and Figure 6-9 each indicate a slight loss of symmetry in the experimental and 

analytical mode shapes, respectively, of modes 10 and 11 which suggests that these 

modes are not as clearly resolved in the structure as the others. 

To investigate mesh discretization error the baseline finite element model was 

recreated with the same parameters on a 10×10 element mesh, 40×40 element mesh, 

80×80 element mesh, and 160×160 element mesh. Natural frequencies from the five total 

models (including the baseline 20×20 element mesh) are compared in Figure 6-14, and 
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the natural frequency error between the 160×160 mesh and each coarser mesh is shown in 

Figure 6-15. It can be seen from these figures that there is a substantial mesh 

discretization error in the 10×10 element mesh with natural frequency differences ranging 

from 1.5% at mode 1 to 8.4% at mode 12. The 20×20 element model also has a 

noticeable but smaller mesh discretization error, with natural frequency differences 

ranging from 0.22% at mode 1 to 2.3% at mode 12. The 40×40 mesh error is smaller 

again, ranging from 0.07% to 0.46%, and the 80×80 element model error is negligible at 

0.01% to 0.07%. Overall the natural frequency convergence is within expectations, 

showing smoothly decreasing natural frequency error with mesh refinement. Mode shape 

modal assurance criterion values calculated over the 36 measurement points relative to 

the 160×160 element model are given in Figure 6-16. These results show improvement 

with each successive refinement; however, the convergence is not smooth, as expected, 

with asymptotic reduction in error in the first three refinements up to 40×40 elements and 

then a sudden jump to near perfect mode shape correlation in the 80×80 element model. 

The jump may indicate some subtlety of modal solution in NASTRAN, or round-off 

error,or there may be an undiscovered modeling error. In any case, the 20×20 element 

model mode shapes are highly correlated to those of the 40×40 element model with a 

maximum modal assurance criterion difference of 0.0001 up to mode 8 and a maximum 

overall difference of 0.006 at mode 10. The 10×10 element model shows noticeable more 

shape error with a maximum modal assurance criterion difference of 0.28 at mode 10. A 

final mesh convergence comparison is made in Figure 6-17 which shows natural  
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Figure 6-13: Images of the baseline finite element model with varying mesh densities: (a) 10×10; (b) 
20×20; (c) 40×40; (d) 80×80; (e) 160×160. 
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Figure 6-14: Comparison of natural frequencies from the baseline model with varying mesh density. 

 

 

Figure 6-15: Natural frequency difference between the baseline model with varying mesh densities 
and the 160x160 mesh (highest mesh density). 
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Figure 6-16: Comparison of modal assurance criterion values between the baseline model with 
varying mesh densities and the 160x160 mesh (highest mesh density). 

 

 

Figure 6-17: Natural frequency difference between the baseline model with varying mesh densities 
and the baseline experimental data. 
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frequency error between each model and the baseline experimental data. It can be seen 

that all of the models have intrinsic error to the experimental data of up to approximately 

5%. The mesh discretization error in the baseline 20×20 element model was used since it 

most closely correlates to the experimental data.  

In conclusion, the 20×20 element model has non-negligible mesh discretization 

error in addition to the baseline material property error compared to the experimental 

data, but to a level that appears manageable. Given the expectation to perform model 

correlation to the baseline data before damage identification and the desire to validate the 

current algorithm within the limitations of real-world models, which will almost always 

be limited in size and therefore have mesh discritization error, the 20×20 element model 

is an adequate baseline for the current study.   

6.4.2 Baseline Model Correlation 

Correlation of the initial plate model was accomplished in two main stages: first 

using the pseudo Newton-Raphson algorithm to minimize natural frequency error by 

updating primary global stiffness parameters, and secondly using the damage detection 

algorithm configured for correlation to update a larger selection of global material 

properties along with the laminate ply angles. The first correlation step was considered 

optional but was included, since modal parameters were available, to validate the 

algorithm and deterministically address the known mesh discretization error. 
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6.4.2.1 Correlation Approach and Details of Implementation 

An initial correlation run was performed using the deterministic pseudo Newton-

Raphson natural frequency algorithm described in Section 6.1.1 to remove the bulk of the 

initial modeling error. Because of the trend of decreased mode shape fidelity in higher 

modes, correlation was applied to only the first 8 modes. Correlation parameters were 

chosen to be the primary laminate stiffness properties E11, E22, and G12. Finite difference 

sensitivity calculations were performed using a perturbation of 1% and an iteration 

parameter step limit of 0.4 was enforced (i.e., all parameter changes scaled when 

necessary to a largest parameter change of 40% of the original value).  

Three additional correlation runs were subsequently performed using the current 

statistical damage identification algorithm with variables arranged to support global 

model correlation. The goal of these correlation runs was to fine-tune the model with 

respect to the frequency response functions which would form the basis of the subsequent 

statistical damage identification runs. Although the four correlation runs could have used 

different combinations of parameters and algorithm variables at each step, it was found 

that adequate correlation was achieved by using the same setup for all runs. Algorithm 

variables were assigned as follows:  

 Same parameters as in the initial correlation were used plus the addition of ρ, 

ν12, and the layup angles of the outermost 8 laminate plies for 13 update 

parameters total: E11, E22, G12, ρ, ν12, θ1, θ2, θ3, θ4, θ9, θ10, θ11, and θ12.  
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 The first statistical correlation run was seeded with assumed initial parameter 

standard deviation values equal to 1% of the initially correlated stiffness 

parameter values (primary laminate stiffnesses E11, E22, and G12) and 0.1% of 

all other parameter values (ρ, ν12, θ1, θ2, θ3, θ4, θ9, θ10, θ11, and θ12). Each of 

the subsequent runs was then started from the final parameter and standard 

deviation values from the previous run. This setup served to reset the effective 

regularization provided by the statistical formulation allowing the update to 

fine-tune further at each step until additional runs would not appreciably 

improve the correlation.  

 Measured modal damping from the healthy reference data set was applied to 

the analytical frequency response functions using the reduced coordinate 

extended Rayleigh modal damping process described in Section 5.4. 

 Nω = 48 update frequency lines were automatically selected using the process 

described in Section 4.1 to be evenly distributed from the subset of 

experimental lines satisfying the following criteria: 

o Falling within ±8 Hz of modes 1 through 8 (selected to capture the 

majority of individual modal peaks while excluding neighboring modes); 

o Mean frequency response function magnitude value of between -5 and -10 

dB in the velocity domain (where the limit values were chosen to capture 

frequencies in the band just exclusive of the peak values at each mode 
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while still being clustered around the selected natural frequencies and the 

velocity domain was selected to make the average frequency response 

function peaks approximately level); 

o Minimum average coherence value of 0.96 across all measurement 

degrees of freedom. 

 The finite difference sensitivity calculation perturbation value was set to 2% 

of the current parameter value at each iteration. 

 An iteration step limit was enforced at each iteration so that, when limited, all 

parameter values would be scaled down until the maximum change was 5% of 

its initial value. 

 Convergence criteria was set such that the iteration process would break on 

the second consecutive incidence of mean parameter change of less than 0.1% 

of the original values. 

The final frequency lines used are shown relative to the baseline measured driving 

point magnitude frequency response function in Figure 6-18.  

Ply angle correlation factors (i.e., the damage factors applied to correlation) 

cannot be assigned according to the simple multiplicative relationship used for other 

material properties since ply angles range around 0° and 90° instead of between 0 and 

their maximum value. Physical ply angle values were therefore recovered from the  
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Figure 6-18: Correlation frequency lines shown relative to driving point measured baseline 
frequency response function magnitude. 

 

correlation factors according to the relationship 

 1 0 1 90CorrelationFactor , (6.14) 

where θ0 is the baseline ply angle value (0° or 90° for the current plate) and θ1 is the 

updated ply angle value. In other words, correlation factors were assumed to reference 

90°, with the resulting change then added or subtracted from the correct baseline ply 
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angle. A correlation factor value of 0.9 would therefore cause a baseline ply angle of 0° 

to update to -9° and a baseline ply angle of 90° to update to 81°. 

6.4.2.2 Correlation Results and Discussion 

The initial pseudo Newton-Raphson natural frequency correlation run converged 

after 3 iterations, producing an improvement in natural frequency correlation from 1.67% 

initial error to 0.42% final error over the optimization mode set (modes 1 through 8). The 

four subsequent correlation runs using the statistical damage detection algorithm in series 

converged in 5, 3, and 3 iterations respectively, with the first run achieving the majority 

of convergence and the next two serving to minimally fine-tune the correlation.  

Plots comparing driving point frequency response functions from the correlated 

analytical model and healthy reference set are shown in Figure 6-20, Figure 6-21, and 

Figure 6-22, with each plot giving either frequency response magnitude in units of dB or 

the real and imaginary representations at varying levels of zoom in the velocity domain. 

In all plots, the measured modal damping from the healthy reference data has been added 

to the undamped analytical frequency response functions in both uncorrelated and fully 

correlated forms, and the baseline experimental frequency response function is shown for 

reference. It can be seen that the initial uncorrelated model had a small amount of error 

compared to the reference data but that this error was reduced through the correlation 

process, especially in terms of the peak amplitude of the higher modes. The correlated  
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Figure 6-19: Correlation cost function convergence for statistical damage identification algorithm 
correlation runs: (a) correlation run 2; (b) correlation run 3; (c) correlation run 4. 
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Figure 6-20: Comparison of driving point frequency response function magnitude before and after 
correlation to healthy experimental reference data. 

 

frequency response function achieves a high degree of fidelity to the experimental 

reference data over the first 8 modes—extending from 10 Hz to approximately 340 Hz—

where the frequency response function based correlation was performed. 
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correlation after each step. The results are presented in plot format with Figure 6-23 
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set and the correlation run results, Figure 6-24 showing the relative change in natural 
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values between the healthy experimental reference set and the result of each correlation  
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Figure 6-21: Comparison of driving point frequency response functions before and after correlation 
to healthy experimental reference data: (a) real component, (b) imaginary component. 
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Figure 6-22: Comparison of driving point frequency response functions before and after correlation 
to healthy experimental reference data, zoomed to the frequency range containing modes 1 through 
8: (a) real component, (b) imaginary component. 
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Figure 6-23: Comparison of natural frequencies between the healthy experimental reference set and 
the correlation run results. 

 

 

Figure 6-24: Relative change in natural frequencies between the healthy experimental reference set 
and the correlation run results. 
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Figure 6-25: Comparison of modal assurance criterion values between the healthy experimental 
reference set and the correlation run results. 
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Table 6-3: Material properties for baseline test-piece finite element model (percent change relative 
to the baseline values is given in italics below each value). 

Property Baseline Correlation 1 Correlation 2 Correlation 3 Correlation 4 

E11 (GPa) 
% change 

129 127 
-1.73% 

138 
+7.06% 

140 
+8.41% 

140 
+8.78% 

E22 (GPa)  
% change 

7.72 11.1 
43.3% 

11.5 
48.7% 

11.6 
49.9% 

11.6 
50.3% 

G12 (GPa)  
% change 

6.41 5.49 

-14.3% 
5.90 

-7.87% 
5.97 

-6.82% 
5.99 

-6.51% 

ν12 
% change 

0.323 0.323 
0.0% 

0.307 
-4.87% 

0.295 
-8.85% 

0.284 
-12.3% 

G13 (GPa)  
% change 

2.63 2.63 
+0.0% 

2.63 
+0.0% 

2.63 
+0.0% 

2.63 
+0.0% 

G23 (GPa)  
% change 

2.63 2.63 
+0.0% 

2.63 
+0.0% 

2.63 
+0.0% 

2.63 
+0.0% 

ρ (g/cm3)  
% change 

1.561 1.561 
+0.0% 

1.689 
+8.23% 

1.709 
+9.48% 

1.713 
+9.80% 

θ1 (°) 
% change 

0.0 0.0 
0.0% 

-0.95 
-1.06% 

-1.03 
-1.15% 

-1.03 
-1.15% 

θ2 
% change 

90.0 90.0 
0.0% 

88.9 
-1.28% 

88.8 
-1.28% 

88.8 
-1.28% 

θ3 
% change 

0.0 0.0 
0.0% 

-4.0 
-0.44% 

-2.82 
-0.31% 

-2.82 
-0.31% 

θ4 
% change 

90.0 90.0 
0.0% 

89.4 
-0.69% 

89.4 
-0.69% 

89.4 
-0.69% 

θ9 
% change 

90.0 90.0 
0.0% 

89.4 
-0.69% 

89.4 
-0.69% 

89.4 
-0.69% 

θ10 
% change 

0.0 0.0 
0.0% 

-4.0 
-0.44% 

-2.82 
-0.31% 

-2.82 
-0.31% 

θ11 
% change 

90.0 90.0 
0.0% 

88.9 
-1.28% 

88.8 
-1.28% 

88.8 
-1.28% 

θ12 
% change 

0.0 0.0 
0.0% 

-0.95 
-1.06% 

-1.03 
-1.15% 

-1.03 
-1.15% 

 

change for each correlation run, shows acceptable changes from baseline values. In 

detail, E11 increased by 8.8%, E22 increased by 50%, G12 decreased by 6.5%, Poisson’s 
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ration decreased by 12.3%, density increased by 9.8%, and ply angles changed from 

between -1.2% to -0.3%. The large change in E22, as well as the smaller changes in other 

stiffness properties, can be attributed to the approximately derived origin of the baseline 

values. These properties were reached by first testing tensile coupons of the bulk 12-ply 

cross-ply laminate and then manually modifying the ply-level stiffness properties using 

the NASTRAN laminate builder until resulting laminate properties approximately 

matched the test results. There was therefore relatively low confidence in the baseline 

properties prior to starting correlation and the resulting correlated stiffness values are 

within physical expectations. The correlated ply angle values are close to the nominal 

perfect values and represent expected manufacturing error from a manual layup. The 

correlated density represents a 23 gram variation from the measured mass of the 

experimental plate, which is outside of the ±0.5 gram tolerance of the digital scale used to 

originally measure the plate mass. The most likely explanation for the discrepency is that 

the plate finite element model retained some error to the physical plate because of the 

known mesh discretization error plus manufacturing imperfections and model theory 

error and the correlation process corrected some of this error through pushing the density 

slightly beyond the measured physical value. The density could have been held fixed as a 

known quantity; however, the goal was to reduce correlation error for subsequent damage 

identification and so the change in density was accepted as a reasonable compromise.  

Parameter standard deviation updated from the initial values of 1% of the initially 

correlated stiffness parameter values (primary laminate stiffnesses E11, E22, and G12) and 
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0.1% of all other parameter values to similar values between 0.00095 and 0.00020 after 

the final correlation. Interestingly, the prior value assigned to each parameter did not 

have a noticeable bearing on its final value. 

Overall, the current plate model was deemed to be a reasonable test case for larger 

systems with their own challenges with the justification that if the algorithm can be 

shown to work on an imperfect subscale model, chances for successful implementation 

on a realistically sized complex system are improved. 

6.4.3 Damaged System Description 

Damage was induced into a sub-region of the test-piece by repeated impacts with 

a metal wedge such as could occur from equipment or other vehicles impacting the 

external surface of an aircraft or from interference of an internal mechanism with the 

primary structure. The goal of the damage was to randomly degrade fiber and matrix 

stiffness to negligible levels in a target region approximately 0.04 m x 0.06 m in size and 

centered at the center of the vertical axis and 0.02 m to the left-of-center of the horizontal 

axis of the plate when the plate is viewed from the front. The damage was imparted by 

manually striking the plate with the sharp edge of a hammer until the desired damage 

state had been achieved. The plate with the damaged region indicated using dashed lines 

is shown in Figure 6-26 with close-up views of the damage region shown in Figure 6-27. 
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Figure 6-26: Experimental composite plate test-piece showing front and back sides and damaged 
region. 

 

      

Figure 6-27: Close-up views of damage in experimental composite plate test-piece. 

Front Back 

Damaged Region 

Front Back 

Approximate Extent of 
Structural Damage 



www.manaraa.com

348 

 

A comparison of healthy and damaged driving point vibration data is given in 

Figure 6-28, with frequency response functions compared in plot (a) and the 

corresponding coherence functions compared in plot (b). The frequency response 

functions are additionally presented in real/imaginary form in Figure 6-29. The modal 

data derived from these frequency response function sets through modal parameter 

estimation are presented in Table 6-4 and compared in terms of relative change in natural 

frequency in Figure 6-30, relative change in modal damping ratios in Figure 6-31, and 

modal assurance criterion diagonal values in Figure 6-32. It can be seen from these 

figures that the damage has changed the structural vibration response, but not 

dramatically. The frequency response functions show small shifts in the modal peaks but 

maintain a high degree of similarity overall. The natural frequencies decreased between 

0% and 3.2% with the highest changes occurring in the low twisting and bending modes, 

small changes in the first three coupled twist-bend modes, and a moderate changes in the 

higher modes. Modal damping values show changes ranging from a 54% decrease on 

mode 11 to an 83% increase on mode 3 (note that modal damping ratios are sensitive to 

damping values and also changes in stiffness and mass). The mode shapes show similarly 

low changes from the damage with modal assurance criterion values of 0.93 on mode 10, 

0.95 on modes 1 and 8, 0.96 on modes 9 and 11, and either 0.98 or 0.99 on the remaining 

modes. Overall, the damage does not appear to have affected the modes with any clear 

pattern and all modes show some aspect of change. The two vibration tests were  
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Figure 6-28: Comparison of driving point frequency response function data from the healthy and 
damaged plates zoomed to the frequency range containing modes 1 through 12: (a) frequency 
response function manitude in units of dB, (b) frequency response function phase. 

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80
Experimental Driving Point Frequency Response Function Comparison (Zoomed)

FR
F 

M
ag

ni
tu

de
 (d

B
)

Frequency (Hz)

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Experimental Driving Point Coherence Function Comparison (Zoomed)

C
oh

er
en

ce

Frequency (Hz)

 

 

Healthy
Damaged

(a) 

(b) 



www.manaraa.com

350 

 

 

Figure 6-29: Comparison of driving point vibration data from the healthy and damaged plates 
zoomed to the frequency range containing modes 1 through 12: (a) real component, (b) imaginary 
component. 
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Table 6-4: Modal summary of the experimental test-piece after damage. 

mode Mode Type Mode 
Shape 

Damaged Test Data Change From Baseline 

Frequency 
(Hz) 

Damping 
Ratio 

Natural 
Frequency 

Change 

Modal 
Assurance 
Criterion 

1 Torsion 1-1 36.9 0.49% -2.07% 0.95 
2 Bending 2-0 106.4 0.35% -3.19% 0.98 
3 Torsion-Bending 2-1 131.8 1.27% 0.13% 0.98 
4 Bending 0-2 135.6 0.15% -1.42% 0.98 
5 Torsion-Bending 1-2 154.7 0.58% -0.22% 0.99 
6 Torsion 2-2 223.2 0.76% -1.86% 0.99 
7 Bending 3-0 300.2 0.24% -0.63% 0.99 
8 Torsion-Bending 3-1 318.0 0.26% -0.13% 0.95 
9 Bending 0-3 375.0 0.29% -0.82% 0.96 
10 Torsion-Bending 1-3 385.0 0.63% -0.93% 0.93 
11 Torsion-Bending 3-2 395.3 0.12% -0.68% 0.96 
12 Torsion-Bending 2-3 442.1 0.50% -1.01% 0.99 

 
 
 

 

Figure 6-30: Relative change in natural frequencies between healthy and damaged plate data sets. 
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Figure 6-31: Comparison of modal damping ratios between healthy and damaged plate data sets. 

 

 

Figure 6-32: Modal assurance criterion diagonal values between the baseline and damaged measured 
reference data.  
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conducted within several hours of each other with negligible changes in experimental set-

up or environment so it can be assumed that the observed changes are due to the damage. 

6.4.4 Damage Identification 

The correlated finite element model was used to perform damage identification 

using the experimentally measured damaged plate vibration data and the current  

damage identification algorithm. The approach and algorithm parameters used are given 

first, followed by results of the primary experimental damage identification validation. 

Three studies are then presented, including the effect of a secondary correlation targeting 

the damage identification frequency range, element level material properties damage 

factors, and an investigation into updated and final parameter variability. 

6.4.4.1 Primary Damage Identification Validation 

Damage identification was run multiple times from the correlated finite element 

model with varying numbers of candidate damage elements to investigate performance 

under different conditions. Because of the large number of elements in the model, the 

damage factors were applied to a 10×10 grid of 4-element groupings, each arranged in 

2×2 squares, for a total of 100 potential damage element groups. For each damage group, 

a single damage factor was applied to all stiffness parameters (E11, E22, G12, G13, and G23) 

in all four elements, meaning a total of 100 potential damage factors for the entire model 

(or proportionally fewer for cases of damage identification on a restricted region). To 
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recap from previous chapters, after damage identification the damage factor value 

represents the level of damage for the properties to which it is assigned on a scale of 0 for 

fully damaged, 1 for no change, and greater than 1 for increases in properties, the last 

being a potentially nonphysical side effect of the unconstrained optimization algorithm 

driving the update. 

Additional algorithm variables common to all runs were assigned as follows:  

 Initial parameter standard deviation values were set equal to 1% of the initial 

correlated parameter values. 

 Measured modal damping from the damaged reference data set was applied to 

the analytical frequency response functions using the reduced coordinate 

extended Rayleigh modal damping process described in Section 5.4. 

 Nω = 24 update frequency lines were automatically selected using the 

processes described in sections 4.1. The lines were selected to be evenly 

distributed from the subset of experimental lines satisfying the following 

criteria: 

o Falling within ±8 Hz of the most highly correlated two modes out of the 

first 8 modes of the damaged reference set, where the correlation was 

assessed between the correlated analytical modes and the healthy 

reference modes using the mode shape selection criteria discussed in 

Section 6.2 (note: mode 3 was excluded from consideration because close 
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proximity to the poorly correlated mode 4 caused mode 3 frequency lines 

to be corrupted);  

o Mean frequency response function magnitude value of between -3 and -13 

dB in the velocity domain (where the limit values were chosen to capture 

frequencies in the band just exclusive of the peak values at each mode 

while still being clustered around the selected natural frequencies and the 

velocity domain was selected to make the average frequency response 

function peaks approximately level); 

o Minimum coherence value of 0.8 across all measurement degrees of 

freedom. 

 The finite difference sensitivity calculation perturbation value was set to 2% 

of the current parameter value at each iteration. 

 An iteration step limit was enforced so that the parameter change vector at 

each iteration would be scaled down to a maximum parameter change of 5% 

of its initial value. 

 Convergence criteria was set such that the iteration process would break on 

the second consecutive incidence of mean parameter change of less than 0.1% 

of the original values. 

The mode shape correlation frequency selection criteria selected modes 5 and 6 

around which to cluster the initial sub-group of update frequency lines. Down selection of 
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frequency lines to be clustered around only two out of the eight modal peaks was 

performed after trial-and-error runs showed improved performance by focusing on the 

regions surrounding the most highly shape correlation. From Table 6-4 and Figure 6-32 it 

can be seen that modes 5 and 6 also have the least mode shape change due to damage, 

although it is not known if this was important. The final 24 frequency lines used for the 

subsequent damage identification runs are shown relative to the damaged system driving 

point magnitude frequency response function in Figure 6-33. 

Although in general practice it is assumed that there would be some form of 

damage location available to pre-screen candidate elements, the first damage 

identification run was performed using all 100 element groups in order to present a more 

challenging validation case and test the algorithm’s potential for global damage location. 

The damage identification run converged after 30 iterations. The damage results are 

shown in Figure 6-34 in the form of a visual damage map, where each square corresponds 

to a damage element group of four identically updated finite elements, and the shade 

indicates the updated damage factor value, with healthy values of 1 indicated by white 

and zero-stiffness damaged values of 0 indicated by black. It can be seen that there is a 

region near the center of the plate with reduced damage factor values. The central 

element group located at mesh coordinates (X=5, Y=5) in particular updated to a damage 

factor value of 0.1, indicating stiffness based damage in that localized region of the 

structure. 
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Figure 6-33: Analysis frequency lines for the primary damage identification validation runs shown 
relative to driving point measured baseline frequency response function magnitude. 

 

The damage identification process was repeated using 30 element groups arranged 

in a grid 6 element groups high and 5 wide centered on the damage zone using the same 

algorithm parameters. Figure 6-35 shows the resulting damage map from the second 
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Figure 6-34: Damage map for 100 element group damage identification case. 
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Figure 6-35: Damage map for 30 element group damage identification case. 
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Figure 6-36: Damage map for 12 element group damage identification case.  
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group and minimal in surrounding elements. The physical damage did appear to partially 

overlap with the element group at (X=5, Y=6) and the expectation was to see partial 

damage indicated in that element group also. The deviation from expectations reflects the 

effect of irreducible modeling error retained post-correlation as well as the approximate 

nature of damage modeling for the current example. 

The residual force vectors calculated between the correlated analytical model and 

damaged reference data are presented visually in Figure 6-37, with the residual force 

values root-mean-square averaged over the update frequency points and the map 

representing the 36 measurement points as they appear on the experimental plate (where 

1, 1 in the figure corresponds to the top-left corner of the plate). Non-zero residual forces 

are spread around the plate, as expected, but not in a pattern that obviously corresponds 

to the damaged region. This occurs because the residual forces capture the effects of 

measurement noise and modeling error in addition to those of damage. There is 

additionally likely a blurring effect from the degree-of-freedom reduction process from 

2646 analytical degrees-of-freedom to the 36 measurement degrees-of-freedom. When 

the residual force vector difference is calculated from the updated model after damage 

identification there is an improvement of up to approximately 20% which is also spread 

around the plate but biased towards the damage region of the structure, as shown in 

Figure 6-38. The current algorithm can thus separate the effects of damage from those of 

unrelated modeling error and noise; however, the effect is blurred by the degree-of-

freedom reduction process and existing error in the correlated model.  
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Figure 6-37: Map of frequency averaged residual forces before damage identification at 36 
measurement points. 

 

 

Figure 6-38: Relative decrease in averaged residual forces at 36 measurement points during damage. 
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6.4.4.2 Effect of Secondary Targeted Correlation 

A secondary targeted correlation was performed from the previously correlated 

model focusing on modes 5 and 6 to investigate the effect of correlating the model only 

in the frequency region being used for damage identification. The correlation setup 

described in Section 6.4.2.1 was used again, including 13 global update parameters and 

parameter standard deviation values loaded from the previous correlation. 48 frequency 

lines were selected around modes 5 and 6. Because of the restricted frequency range 

(25% of the previous correlation runs) the frequency response function magnitude bounds 

were removed and the selection tolerance widened to ±16 Hz around each mode. The 

correlation converged after 3 iterations. Parameter movement was minimal with density, 

E11, and the ply angles remaining unchanged to within four significant figures and E22, 

G12, and ν12 decreasing by 0.3%, 0.2%, and 0.3%, respectively.  

The 12 element damage identification process was run again from the secondarily 

correlated model using the setup described in Section 6.4.4.1, additionally following the 

correlation setup for frequency line selection of no frequency response function 

magnitude bounds and selection tolerance of ±16 Hz around each of modes 5 and 6. The 

resulting damage map given in Figure 6-39 shows generally improved resolution of the 

expected damage state, with clear indication of damage in the main damaged element 

group (X=5, Y=5), indication of damage in the secondary upper damage element group 

(X=5, Y=6), and damage factor values generally very close to unity for other element 

groups. The two element groups to the right of the damage region show indications of 
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degradation which may indicate internal structural degradation in the damaged plate or 

(more likely) reflect lingering modeling error. Final damage factor values converged to 

0.47 for the primarily lower damage element group, 0.75 for the secondary upper damage 

element group, and between 0.77 and 1.03 for other damage factors.  

 

 

 

 

 

Figure 6-39: Damage map for 12 element group damage identification case after secondary 
correlation.  
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6.4.4.3 Damage Identification Using Element Material Properties 

To test the damage identification process on the level of individual element 

material parameter results the algorithm was rerun from the secondary targeted 

correlation model with damage factors assigned to E11, E22, and G12 of each of the two 

identified damaged elements, creating a total of six damage parameters for the update. 

From the point of view of the complete algorithm this optional step would occur 

subsequently to damage identification runs performed using elemental damage factors. 

The material parameter runs could therefore be confined to a reduced set of candidate 

damaged elements resulting in a reasonably small number of distinct material parameters 

for the final update.  

The damage identification algorithm was run using the same setup described for 

the primary runs of Section 6.4.4.1. The resulting damage factors are represented in 

Figure 6-40 using a separate damage map plot for each of the elemental stiffness 

parameters. Updated damage factor values were 0.1, 0.89, and 0.99 for the lower 

damaged element E11, E22, and G12 parameters, respectively; and 0.86, 1.0, and 0.99 for 

the upper damaged element E11, E22, and G12 parameters, respectively. The corresponding 

damage factor standard deviation values updated from 0.01 each to 0.0018, 0.0098, and 

0.01 for the lower damaged element E11, E22, and G12 parameters, respectively; and 

0.0049, 0.01, and 0.01 for the upper damaged element E11, E22, and G12 parameters, 

respectively. Despite the accuracy of the element-global damage factor values achieved  
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Figure 6-40: Damage map for 2 element group multi-element parameter damage identification case 
(dashed line indicates approximate limit of damaged elements). 
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by the end of the 12 element run these final damage identification results likely have a 

non-negligible amount of error. This is especially true for the lower sensitivity E22 and 

G12 parameters as the physical damage case would likely have reduced all three of the 

candidate stiffnesses to lower values for both elements. It is expected that the remaining 

noise in the experimental data and modeling error is too high for accuracy at this level of 

resolution. However, standard deviation did not change for these parameters indicating 

that information was not gained and the updated values should not be trusted. 

6.4.4.4 Investigation into Initial and Updated Parameter Variability 

The values of initial damage factor variability specified at the beginning of a 

damage identification run influence both the final updated variability values and, through 

regularization, the ability of the damage factors to update to values much different from 

their original values. Regularization has a strong influence on the outcome of the damage 

identification optimization process, especially for cases seeking to update a large number 

of parameters with varying sensitivities. In these cases, unregularized optimization may 

lead to some parameters, usually those with low sensitivity coefficients, being adjusted to 

values which are far removed from their initial and physically realistic levels. 

Regularization effectively establishes a penalty component in the optimization cost 

function that discourages parameters from traveling too far. The net effect is that (1) 

parameters stay within reasonable bounds; and (2) the optimization becomes smoother, 

more stable, and more likely to converge. On the other hand, regularization introduces a 
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restoring force which may prevent parameters from reaching values that could produce 

the lowest possible error.  

It is one of the fundamental assumptions of the current algorithm that the 

regularization applied for each parameter is proportional to the inverse of its initial 

variance, as can be seen from the previously defined underlying cost function definition, 

 0 0

11
0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) TT

RR r rJ r R r S r R r r r S r r( )ˆ̂̂ T( )( ˆ̂ , (3.111) 

where ˆ( )J r  refers to the total cost function value, r̂  refers to the current parameter 

values, 0̂r  refers to the initial parameter values, 
0 0r rS  refers to the initial parameter 

variance values, and the remaining variables are as defined in Chapter 3. The initial 

variability values therefore correspond directly to how far the damage factors will be able 

to change from their initial values. This makes sense on a conceptual level—that 

parameters known to be accurate at their initial values (i.e., low variability) should 

remain at similar values while those values with less associated knowledge (i.e., high 

variability) should be less constrained. In practice, however, the best choice of actual 

values for initial parameter variance is not obvious. Likewise, the resulting posterior 

variance values can be interpreted in different ways.  

The original expectation for the current algorithm had been to use the parameter 

standard deviation values generated from the final correlation run. The effectiveness of 

this approach was investigated by repeating the standard 12 element damage 

identification from Section 6.4.4.2 with initial parameter standard deviation set to 
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0.00040, which was the average of updated stiffness parameters from the secondary 

targeted correlation run. The result is shown in Figure 6-41. It can be seen that the 

damage parameters fail to update to any reasonable approximation of the physical 

damage state, with the lowest updated damage factor having a value of 0.96. The lack of 

change in any of the parameters suggests that the damage identification was over-

constrained, meaning the initial standard deviation values were too low and resulting 

regularization too strong. 

Even without this experimental evidence, the original concept of carrying 

correlated variability values into the damage identification can be faulted conceptually as 

 

 

Figure 6-41: Damage map results for case with initial parameter variability loaded from final 
statistical correlation output. 
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follows. In a healthy structure parameters can be initially measured independently from 

the structure and then further correlated to measured data as part of the healthy analytical 

model. This process produces a high degree of confidence in the appropriateness of the 

resulting parameter value and subsequently the parameter variability is low. However, 

when the structure then endures a damaging event that changes its structural 

configuration by some unknown amount, it cannot be reasonable to assume that the 

associated analytical parameter values are still known with the same degree of 

confidence. The initial parameter variability values must therefore be reestablished post-

damage, taking into account both the new lack-of-knowledge about the current parameter 

values and the consideration that they will strongly influence damage identification 

regularization. 

To further investigate trends between initial parameter variability values and 

algorithm performance, additional damage identification runs were performed using the 

standard 12 update parameters damage identification case from Section 6.4.4.2. With all 

other algorithm variables being held constant, initial damage factor standard deviation 

values were set to 1.0000, 0.1000, 0.0100, 0.0010, 0.0001, and the final average 

correlated value of 0.0004 for all damage factors. Updated damage factor values from 

these runs are presented by way of damage maps in Figure 6-42 with specific values 

plotted against initial standard deviation in Figure 6-43. The number of iterations to 

convergence for each case is additionally plotted against initial standard deviation in 

Figure 6-44.  
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Figure 6-42: Damage map results for initial parameter standard deviation study, where subplots 
show results from runs with initial parameter standard deviation values set to (a) 1, (b) 0.1, (c) 0.01, 
(d) 0.001, (e) 0.0004 (average of posterior correlated values), (f) 0.0001. 
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Figure 6-43: Updated damage factor results from initial parameter variability study. 

 

 

 

Figure 6-44: Number of iterations to convergence for initial parameter variability study. 
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It can be seen from these results that the runs with initial standard deviation 

values of 0.1000 and 1.0000 required increasingly high numbers of iterations to reach 

convergence and produced erroneous final damage factor values. This result is indicative 

of the optimization parameters experiencing wide-ranging movement through the 

solution-space before converging—a behavior common to runs with a high range of 

parameter sensitivities and low regularization. The run with initial standard deviation 

value of 0.01 produced a successful damage identification result, similar to that reached 

by the nearly identical 12 element damage identification case presented in Section 

6.4.4.1. The remaining test cases, with increasingly low values of initial parameter 

variability, were increasingly overconstrained by regularization to the point that the 

damage factors could not move appreciably at all in the cases of initial parameter 

variability loaded from the model correlation output and initial standard deviation equal 

to 0.0001. 

From the point of view of damage identification, there is obviously an optimal 

region where regularization allows meaningful convergence without overconstraining the 

optimization. For the current study case, the value of 0.01 for initial damage factor 

standard deviation produced acceptable results, with higher and lower values leading to 

degrading results as a result of either too much or too little regularization. For problems 

with different ranges of parameter sensitivity and measurement noise, acceptable values 

for initial damage factor standard deviation could be different. At this stage it is not clear 

if there is an available means of accurately establishing initial parameter variability based 
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on absolute criteria. It is thus recommended that operator intuition and experience be 

used to set initial values with adjustments made subsequently based on algorithm 

convergence and the amount of apparent regularization until a suitable range of values is 

established for the given problem. 

Corresponding updated damage factor standard deviation results from the six runs 

described above are plotted against initial standard deviation in Figure 6-45, with relative 

decrease in standard deviation value given in Figure 6-46. From these results it can be 

seen that lower initial parameter standard deviation values lead to lower updated 

parameter standard deviation values, and also that the relative amount of change 

decreases with decreasing initial value. Further insight is provided by rewriting the 

expression for updated parameter variance given in Eq. (3.129) from Section 3.6.2 by 

expanding and canceling terms as 

 
0 0

1
1 1

ˆˆ ˆ ˆ

T

rr r r
a a

S S S
r r

, (6.15) 

where ˆˆrrS is the updated parameter covariance matrix, 
0 0ˆ ˆr rS  is the updated parameter 

covariance matrix, a
r

 is the parameter sensitivity with respect to the frequency 

response functions, and S  is the measurement noise variance. Inspection of the 

resulting relationship verifies that updated parameter variance should decrease with 

decreasing initial variance value, as demonstrated in Figure 6-45. The equation  
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Figure 6-45: Updated damage factor standard deviation value plotted against initial damage factor 
standard deviation value from initial parameter variability study. 

 

 

Figure 6-46: Relative change between initial and updated damage factor standard deviation values 
with respect to initial value from initial parameter variability study results. 
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additionally shows that updated parameter standard deviation will decrease with 

decreasing measurement noise variance and increasing parameter sensitivity. The 

trending of updated parameter standard deviation with measurement noise makes 

conceptual sense, dictating that more noise will lead to higher updated parameter 

variability. The inverse relationship with sensitivity shows that higher sensitivity 

parameters should end up with lower updated variability, and vice versa. This 

relationship makes physical sense from the point of view that high sensitivity parameters 

will stand out more strongly above the noise and therefore become more accurately 

known. An additional interesting point to be taken from inspecting Eq. (6.10) is that the 

decreasing relative standard deviation change observed in Figure 6-46 is likely related to 

the relative magnitude of 
0 0

1
ˆ ˆr rS  compared to 1

Ta a
S

r r
. For any given 

parameter, this means that the amount of relative decrease in parameter variability 

depends on how high the initial parameter variance is compared to the ratio of noise 

variance to parameter sensitivity squared. The noise variance and parameter sensitivity 

are fixed for a given update problem; therefore, insight into reasonable values of initial 

damage factor variance could potentially be gained by inspecting its relative magnitude 

compared to the ratio of parameter sensitivity and noise variance.  

The meaning of updated parameter variance values is not definite; however some 

clarity is offered by the above observations and analysis. Quantitatively, the updated 

damage factor values describe the uncertainty associated with the parameters and can 

therefore be used with respect to subsequent analyses, such as the extension to prognosis 
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as discussed in Chapter 1. It should be considered that the operator-specified initial 

variability values will influence the final variability values. Independent of their 

individual values in an absolute sense, however, the relative updated variability values 

are useful in a qualitative sense when viewing damage identification results since they 

give an indication of parameter sensitivity to the measurement noise and, therefore, 

confidence in the updated parameter values.  

6.4.5 Discussion 

The statistical damage identification algorithm developed through previous 

chapters has been extended to experimental implementation and successfully validated on 

an experimental composite plate with laminate damage. The composite plate test-piece 

was manufactured from a commercially produced stock laminate plate and vibration 

tested using the roving hammer impact method to produce healthy reference data. A finite 

element model was built and correlated using a combination of deterministic pseudo 

Newton-Raphson minimization of natural frequency error and a correlation 

implementation of the statistical damage identification algorithm. The correlated model 

was subsequently used with measured vibration data from the damaged plate to 

successfully perform damage location and damage identification. The effect of a 

secondary correlation targeted to the damage identification frequency range was 

additionally studied, along with damage identification using individual material 
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properties. Finally, the implementation and interpretation of damage factor variability 

was explored.  

The algorithm was able to successfully correlate initial approximate baseline 

finite element model and subsequently identify the damage in the face of experimental 

measurement noise and modeling error. There remain open questions with respect to 

damage identification of low-sensitivity parameters and with establishing and interpreting 

parameter variability. However, the current algorithm’s ability to successfully perform 

realistic experimental damage identification has been demonstrated. 

The material contained in Chapter 6 was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, and Prof. Joel Conte. The dissertation author 

was the primary investigator and author of this work. 
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7 DEVELOPMENT OF A COMPOSITE WING TEST-BED 

The final chapter diverges from the primary damage identification algorithm to 

present the author’s contribution towards development of a composite aircraft wing 

structural health monitoring test-bed. The development was part of a multi-team 

collaborative effort lead by Los Alamos National Laboratory focused on furthering 

technology for structural health monitoring and prognosis. The test-bed is comprised of a 

lightweight composite main wing structure based on modern unmanned aerial vehicle 

design practices, a family of detailed structural finite element models, and a laboratory 

setup for modal vibration testing.  

An explanation of the project motivation is provided first along with details of the 

test-bed design. The finite element models are described followed by an analysis of 

modal behavior and an analytical damage study. Physical manufacturing of the wings is 

presented followed by details and results from vibration testing and model correlation. 

The chapter concludes with recommendations for future work. 

 Composite Wing Test-Bed Project 7.1

As discussed in Chapter 1, a distinct area of interest for structural health 

monitoring is composite airframes, in particular the all-composite lightweight structures 

used for certain modern unmanned aerial vehicles. Composite airframes are susceptible to 
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both fatigue and impact damage and unmanned aerial vehicle airframes in particular are 

more likely than their manned counterparts to be operated close to or past the point of 

structural failure. There is an economical advantage to be gained from developing 

structural health monitoring and prognosis capability for unmanned aerial vehicles and 

these systems likewise offer a platform for testing developmental structural health 

monitoring and prognosis systems. 

In the interests of forwarding structural health monitoring technology for 

unmanned aerial vehicles and other aerospace structures, components of a specialized 

test-bed were developed to facilitate studies on damage location, damage identification, 

and structural health prognosis. The test-bed development was part of a multi-team 

project lead by Dr. Charles Farrar at Los Alamos National Laboratory with three research 

groups at the University of California, San Diego (UCSD). The UCSD groups consisted 

of the current author and Prof. John Kosmatka tasked with developing and testing the 

physical scaled wing test-bed and methods for damage identification, a team lead by 

Howard Matt and Prof. Francesco Lanza di Scalia tasked with developing piezo-electric 

sensor networks and methods for ultrasonic damage location, and a team lead by 

Maurizio Gobbato and Prof. Joel Conte focusing on structural health prognosis. The 

damage location work of Matt and Lanza di Scalia is summarized in reference [7-1].  The 

prognosis work of Gobbato and Conte is summarized in reference [7-2]. Development of 

the test-bed and methods for damage identification is presented in the current 

dissertation. 
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 Test-Bed Scaled Wing Design 7.2

The physical test-bed is loosely based on the wing structure of the Predator A 

unmanned aerial vehicle produced by General Atomics in San Diego, CA. An example of 

the Predator A aircraft is shown in Figure 7-1. The Predator vehicle wings are structurally 

independent from the rest of the vehicle and can be detached, as shown in in Figure 7-2. 

Each wing has a protruding main spar with the spars on port and starboard wings offset in 

the vehicle longitudinal direction to enable the wing spars to overlap while the wing 

surfaces remain symmetrical. Each wing additionally has a pin protruding from the wing 

root aft of the main spar which reacts against the fuselage to counteract torsional wing 

loads. For flight the wings are inserted into the main aircraft fuselage and bolted through 

the fuselage primary structure in a cantilevered configuration. This configuration means 

the aircraft can be transported in a low-profile shipping container but also results in high 

loads in the skin spar bond at the wing root when the aircraft is in operation. These loads 

lead to disbond damage cases near the wing root and, combined with the susceptibility of 

the main composite main wing surface to impact damage, results in the potential for the 

wing structures to age faster than the rest of the aircraft structure. The removable wings 

can be replaced when they become damaged or reach the end of their fatigue life. Despite 

the high cost of new wings, replacement can be more economical than regular structural 

inspection as the wings age, whether or not they are actually damaged. Structural health  
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Figure 7-1: General Atomics’ Predator A Unmanned Aerial Vehicle in flight. 

 

 
 

 

Figure 7-2: Predator UAV wings removed from the rest of the aircraft. 
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monitoring could allow a more nuanced approach to managing the life-cycle of these and 

similar aircraft, with an obvious extension to economical and safety benefits in manned 

aircraft.  

Following the example of this aircraft the test-bed structure was designed in 

adherence to the principles of modern composite structural design, using graphite epoxy 

composite in a tailored layup with sandwich structures in unsupported regions of the 

wing skins to provide simple load paths with a minimum of redundancy and waste. The 

wing was designed with geometry visually similar to the Predator wing at approximately 

1/3 scale with a constantly tapering cross-section and protruding main spar. Additionally 

the Predator’s duel-spar and sandwich composite skin architecture was adopted. Apart 

from approximate form-factor and basic structural design, however, the test-bed structure 

deviated significantly from the Predator design. An SD-7062 airfoil was selected for the 

outer mold line of the wing—both for the finite element models and physical 

manufacturing of the wing. The leading edge was formed by designing a dog-leg style 

joggle into the lower skin so that the top skins could overlap by several millimeters and 

form a bondline. The trailing edge structure was formed by bonding the top and bottom 

skins to a wedge of lightweight structural closed-cell foam. The laminate system was 

chosen to be a woven high-modulus graphite-epoxy prepreg system, based on the specific 

stiffness requirements of airframes and material availability, with Nomex honeycomb for 

the sandwich core.  
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A schematic of the design with major dimensions is presented in Figure 7-3 and 

views of the Solidworks computer aided design model shown in Figure 7-4. To meet the 

design constraints discussed above the test-bed wing structure was formed from four 

independently manufactured primary components: top skin, bottom skin, main spar, and 

aft spar. The two spars provide the primary load path for wing bending and are similar to 

each other in design and construction—C-section type beams with the horizontal top and 

bottom structures including built-up regions of unidirectional graphite composite to carry 

tension and compression loads and the vertical web structure being constructed of angled 

weave to carry shear. The wing skins were designed to transmit aerodynamic wing loads 

into the rest of the structure and provide torsional stiffness and load carrying capability. 

The skins were constructed primarily of angled weave for carrying global wing torsional 

loads and included honeycomb core co-cured through unsupported regions of the wing 

skin structure to provide local stiffness for aero surface loads. The sandwich core regions 

were tapered down to plain-laminate close-out through bondline regions with a 45° 

chamfer in the core to decrease stress concentrations. The four wing components were 

designed to be co-cured as a single independent piece and then bonded together along 

with a wedge-shaped piece of foam at the trailing edge in a secondary step. This overall 

design approach meets the necessary wing torsional and bending stiffness/strength 

requirements with low mass compared to conventional metallic wing designs with 

regularly-spaced ribs and stringers. Certain details of a full-scale wing, such  
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Figure 7-3: Test piece dimensions (dimensions in cm). 
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Figure 7-4: Computer aided design renderings of the test-bed wing structure from various viewpoints 
(from top down): isometric view, plan view, root view, tip view. 

Isometric View 

Plan View 

Root View 

Tip View 
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as articulating control surfaces, fuel tanks, and associated plumbing and harnessing were 

not included for the scaled-down test-bed for practical manufacturing reasons and to 

maintain focus on response of the primary structure. It should be noted in Figure 7-4 that 

the core is shown exposed at the wing root and tip but was closed-out by a chamfered 

section of laminate in the physical case. Layup details are given in Table 7-1. 

 

 

Table 7-1: Layup details. 

Region Layup 

Skin closeout [45]2 

Skin sandwich [45/core/45]T 

Spar cap [45/0/0/45]T 

Spar web [45]2 

 

 Analytical Development 7.3

A detailed finite element model of the wing structure was constructed as part of 

the test-bed and to facilitate studying dynamic response of the system. The finite element 

model was constructed with the capability to model the wing structure in its healthy state 

and with various types of damage. Following the requirements for finite element model 

based damage identification outlined in Chapter 5, the finite element mesh had to be 

detailed enough to approximate realistic damage cases while maintaining a reasonably 
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low degree-of-freedom count for damage identification algorithm viability and 

computation efficiency. The damage cases considered during model development were 

primarily skin-spar disbonds, which can occur as a result of operational fatigue, and skin-

core disbonds, which can occur from blunt impact to the external wing surface.  

The baseline models were constructed primarily of shell elements for all laminate 

regions with solid elements representing the sandwich core and aft-edge bonding foam. 

Rigid links were used as a first-order idealization of bondlines between spar and skin, for 

the first damage type, and between skin laminate and skin core, for the second. Damage 

could then be simulated by removing rigid links through the affected region. This 

modeling technique additionally allowed the potential for modeling the bondlines as 

separate solid elements with properties that could be adjusted to represent various levels 

of damage—for example, elements with reduced Young’s modulus to represent micro 

fatigue cracks in the adhesive or manufacturing discrepancies in the adhesive mixture.  

Details of the finite element model are provided in the first subsection followed 

by analysis of the wing modes and an investigation into wing response in various cases of 

spar-skin disbond damage at the wing root. 

7.3.1 Finite element model development 

The wing test-bed finite element model was made for MD.NASTRAN [7-3] using 

Femap [7-4] as a pre- and post-processor. Four independent component finite element 

models were created to match the four wing pieces, with each component model able to 
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be analyzed independently for correlation purposes. The four models were then attached 

using RBE2 rigid links to simulate the ideally bonded physical case. Isoparametric 

CQUAD4 quadrilateral shell elements with two-dimensional orthotropic MAT8 material 

properties defined using the PCOMP laminate property set were used for all laminate 

regions. Laminate nodes were situated at element mid-planes with element mid-planes 

positioned such that the exterior element surface, including element thickness, formed the 

smooth airfoil mold-line. Sandwich sections were modeled as shells connected with 

RBE2 rigid links to the solid core which was modeled using 8-node cubic CHEXA solid 

elements with PSOLID property sets and 3-dimensional MAT9 anisotropic material 

cards. Honeycomb material only has appreciable stiffness properties in transverse shear 

directions (G13 and G23) and the transverse extensional direction (E33) and all other 

properties were set non-zero, but several orders of magnitude lower. The bondlines at the 

leading edge, top and bottom of both spars, and top and bottom of the trailing edge were 

modeled using RBE2 rigid links and additionally included non-structural mass-

membranes modeled with CQUAD elements, PSHELL property cards, and MAT1 

material cards. The foam wedge used to create the trailing edge bonding surfaces was 

modeled using CPENTA elements, PSOLID property cards, and MAT1 material cards.  

Longitudinal primary element boundaries were set to follow the main wing 

geometry lines, including the lines of sandwich region closeouts and both spars. 

Additionally, a constant leading-to-trailing edge element count was maintained down the 

length of the wing producing a similarly tapered grid of elements for each layer. The 
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mesh structure visible on the top skin surface was therefore closely matched through all 

element layers—outside and inside laminates of the top and bottom skins, top and bottom 

caps of both spars, and the solid mesh of the sandwich core—meaning that nodes 

requiring rigid link connections were automatically positioned close together.  

The assembled wing model is shown from the plan view in Figure 7-5. A view 

from the wing root is given in Figure 7-6 showing the tapered wing interior surfaces 

receding into the page and the open wing tip visible at the deepest point. A close-up view 

of the top spar-skin joint is given in Figure 7-7 showing rigid links connecting the skin to 

the spar cap and a layer of non-structural membrane providing adhesive mass to the 

bondline. Views of the model leading and trailing edges are given in Figure 7-8 and 

Figure 7-9, respectively. The chamfered sandwich core is also visible in Figure 7-7 as 

white blocks to the left and right of the spar-skin bondline, with laminate skins following 

the contour of the core and attached at their corners via rigid links. Overall model mesh 

details are given in Table 7-2, including the number of elements in each model and the 

number of nodes and structural nodes, where the latter count disregards one of each pair 

of nodes sharing rigidly linked degrees-of-freedom. Table 7-3 provides structural 

material properties used for the laminates and honeycomb core in the baseline finite 

element models. It should be noted that the G13 and G13 properties for the laminate are 

included for completeness but have negligible influence on model response. 
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Figure 7-5: Assembled finite element model, plan view, showing mesh distribution. 

 
 

 

Figure 7-6: View of model cross section and interior, from the root. 

 
 

 

Figure 7-7: Close-up view of spar-skin bondline modeling. 
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Figure 7-8: Close-up view of the leading edge. 

 

 

 

Figure 7-9: Close-up view of the trailing edge. 
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Table 7-2: Finite element mesh information for wing and component models. 
 

 Number of Elements Number of Nodes 
(Structural Nodes) 

Assembled wing 27,370 36,246 (17,600) 

Top skin 9,486 10,970 (5624) 

Bottom skin 9,486 10,970 (5624) 

Main spar 1,815 1,640 

Aft spar 1,683 1,520 

 
 
 
 
 
 
 
 

Table 7-3: Finite element model material properties for the baseline finite element model. 

Laminates  
(3D orthotropic) 

 Core  
(3D anisotropic) 

  Foam  
(Isotropic) 

E11 (Pa) 1.11 ×1011  G11 (Pa) 6.89×103  E (Pa) 0.0700 

E22 (Pa) 1.11 ×1011  G22 (Pa) 6.89×103  G (Pa) 0.0191 

G12 (Pa) 4.83×109  G33 (Pa) 1.38×108  ν -0.45* 

ν12 0.02  G44 (Pa) 6.89×103  ρ (g/cm3) 0.0521 

G13 (Pa) 4.14×109  G55 (Pa) 41.4×107    

G23 (Pa) 4.14×109  G66 (Pa) 24.1×107    

ρ (g/cm3) 1.660  G12 (Pa) 6.89    

   G13 (Pa) 6.89  * Negative value was used in 
error (correct value is 0.45). 

Material was used in low-load 
region and the error is not 
believed to have impacted 

results. 

Ply t (mm) 0.25  G23 (Pa) 6.89  

   Gij, i≠j (Pa) 0  

   ρ (g/cm3) 0.1403  
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7.3.2 Analytical Study of Modes 

Undamped modes for baseline wing finite element model were calculated using 

the normal mode solution in NASTRAN in several boundary condition configurations. 

The cantilevered-pinned configuration used in the physical Predator aircraft wings was 

first modeled by constraining all degrees-of-freedom for the nodes on the top and bottom 

surfaces of the protruding portion of the main and pinning all degrees-of-freedom for the 

root aft-spar nodes. Modes were then calculated with the wing structure in a free-free 

configuration and, additionally, with grounded springs of varying stiffness attached to the 

root cantilever nodes to investigate response with a non-ideal cantilever configuration.  

The first 14 undamped normal modes of the cantilevered configuration are 

summarized in Table 7-4 in terms of mode order, natural frequency, and mode shape 

description. The first eight mode shapes are additionally shown in Figure 7-10, where the 

deformation and contours represents total translation of each node. In order of ascending 

natural frequency the fundamental modes are 1st bending, 2nd bending, 1st transverse 

bending, 3rd bending, 4th bending, 2nd transverse bending, 1st torsion, and a mode 

dominated by local skin deformation in the root trailing edge region. The fact that the 

wing has four out-of-plane bending modes and two transverse bending modes before the 

first torsional mode occurs as a result of the long aspect ratio of the wing combined with 

the high torsional stiffness afforded by the ±45° ply structure of the skin laminate. It  
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Table 7-4: Normal modes for baseline finite element model in cantilevered 
configuration. 

 

Mode Natural Frequency (Hz) Mode Description 

1 8.6 1st Bending 

2 35.4 2nd Bending 

3 39.0 1st Transverse Bending 

4 85.2 3rd Bending 

5 152.1 4th Bending 

6 159.5 2nd Transverse Bending 

7 164.0 1st Torsion 

8 203.9 Trailing Edge Skin Mode 

9 221.8 1st Chordwise Mixed 

10 240.2 2nd Chordwise Mixed 

11 252.6 2nd Torsion Mixed 

12 259.6 Skin Mode 

13 284.8 Mixed 

14 297.1 5th Bending Mixed 

 

 

would have been desirable to place a distinct torsional wing mode more closely 

interspaced with the first two wing bending modes to better simulate the conditions of a 

standard high-aspect wing structure; however, the physical scaling process limited 

options with respect to ply layup so this was accepted as a necessary deviation.  

A selection of the fundamental modes for the baseline wing model in free-free 

configuration is given in Table 7-5 and a selection of eight mode shapes are shown in 

Figure 7-11, where deformation and contours again represent total translation of each 
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Mode 1 – 8.6 Hz (1st Bending) 

 
Mode 2 – 35.4 Hz (2nd Bending) 

 
Mode 3 – 39.0 Hz (1st Transverse Bending) 

 
Mode 4 – 85.2 Hz (3rd Bending) 

 
Mode 5 – 152.1 Hz (4th Bending) 

 
Mode 6 – 159.5 Hz (2nd Transverse Bending) 

 
Mode 7 – 164.0 Hz (1st Torsion) 

 
Mode 8 – 203.9 Hz (1st Skin Mode) 

Figure 7-10: First eight modes from the baseline finite element model in cantilever configuration. 
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Table 7-5: Normal modes for baseline finite element model in free-free 
configuration. 

 

Mode Natural Frequency (Hz) Mode Description 

1 30.1 1st Bending 

2 78.4 2nd Bending 

3 111.4 1st Chordwise Bending 

4 142.1 1st Transverse Bending 

5 144.9 3rd Bending 

6 184.8 4th Bending/Spar Mode Mixed 

7 193.4 Spar Mode 

8 210.8 Trailing Edge Skin Mode 

9 223.1 2nd Chordwise Bending 

10 231.9 Spar + Skin Mode 

11 234.8 5th Bending 

12 268.4 1st Torsion Mixed 

13 288.4 3rd Torsion Mixed 

14 292.6 Chordwise Mixed 

 

 

node. Although the ordering of primary bending modes is similar to the cantilever 

configuration, the torsion mode is less distinct and is both higher in frequency and mixed 

with skin and spar deformation. Conversely, chordwise bending occurs with more 

freedom and at a lower frequency since the spars are free to move at the root. It should be 

noted that the ‘1st’ bending/torsion modes in the free-free configuration are actually more 

similar to the ‘2nd’ bending/torsion modes in the cantilevered case, with two low-

deformation nodal lines instead of one. Because of a lack of constraints for force reaction, 
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Mode 1 – 30.1 Hz (1st Bending) 

 
Mode 2 – 78.4 Hz (2nd Bending) 

 
Mode 3 – 111.4 Hz (1st Chordwise Bending) 

 
Mode 4 – 142.1 Hz (1st Transverse Bending) 

 
Mode 5 – 144.9 Hz (3rd Bending) 

 
Mode 6 – 184.8 Hz (4th Bending/Spar Mode) 

 
Mode 9 – 223.1 Hz (2nd Chordwise) 

 
Mode 12 – 268.4 Hz (1st Torsion Mixed) 

Figure 7-11: Selection of modes from the baseline finite element model in free-free configuration. 
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the free-free case can’t support modes with a single nodal line. The free-free modes most 

similar to the cantilevered ‘1st’ bending and torsion modes in terms of overall structural 

motion are rigid body modes at close to zero natural frequency (the six rigid body modes 

for the cantilever case are not presented in Table 7-5 and Figure 7-11 but do exist in the 

solution). 

An installed physical wing will not have an idealized cantilever constraint with 

zero displacement and rotation at its root because of compliance in the aircraft fuselage 

structure. Instead, the physical boundary condition for a wing will be somewhere between 

cantilevered and free-free. In order to investigate wing response with a non-ideal 

cantilevered boundary condition the wing was modeled with undamped springs for all 

cantilever nodes. The springs were grounded to free-floating nodes which were then 

constrained in all degrees-of-freedom for the main spar cantilever connections and in 

translational degrees-of-freedom for the aft spar pin connections. Thus defined, the spring 

stiffness could be varied from a very high value, to simulate a cantilevered boundary 

condition, to a very low value, to simulate a free-free boundary condition. The finite 

element model with root springs is shown in Figure 7-12 and a description of the cases 

used for comparison is given in Table 7-6. The spring stiffnesses were varied from values 

of 1010 N/m to 1 N/m in power increments of 2 for all degrees-of-freedom. The results, 

plotted in Figure 7-13, are given in terms of 7 primary modes of the structure, including 

the first four bending modes, 1st torsion, 1st chordwise bending, and the skin mode   
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Figure 7-12: View of wing root springs for boundary condition study. 

 

 

Table 7-6: Description of cases for boundary condition study. 
 

Case Spring Stiffness (N/m) Boundary Condition 
Description 

1 ∞ Cantilevered 

2 1010 Spring Order 10 

3 108 Spring Order 8 

4 106 Spring Order 6 

5 104 Spring Order 4 

6 102 Spring Order 2 

7 1.0 Spring Order 0 

8 0 Free-Free 
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characterized by local deformation of the root trailing edge. The bending and torsion 

mode naming convention used for all cases of the boundary condition study is based on 

that of the cantilevered configuration—i.e., with the 1st mode for each type characterized 

by a single nodal line—to allow smooth tracking from the cantilevered to free-free 

configurations. The descriptive numbering for modes approaching a free-free 

configuration is therefore offset by one from that presented in Table 7-5 and Figure 7-11 

since the 1st bending and torsion modes approach rigid body motion as spring stiffness 

decreases. Figure 7-13 shows that 2nd and higher out-of-plane bending modes are not 

greatly influenced by boundary condition stiffness; however, the torsion and chordwise 

 

 

 

Figure 7-13: Summary of natural frequencies for boundary condition study with boundary condition 
stiffness varying from cantilevered to free-free. 
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bending modes decrease dramatically with boundary condition stiffness, with the 1st 

torsion mode in particular decreasing in frequency from 164 Hz to approximately zero 

and the 1st chordwise bending mode decreasing by a factor of two from 222 Hz to 111 

Hz. The 1st bending mode additionally decreases in frequency to approximately zero, as 

expected. A notable observation is that the bending modes all trend slowly downward 

until the 1st bending mode is mode is dominated by rigid body motion (at spring order 2), 

at which point the remaining bending modes increase in frequency slightly to values that 

then remain approximately constant as the spring stiffness is decreased to the free-free 

configuration. The change in trending is a result of the primary force reaction mechanism 

switching from being dominated by the spring stiffness to being dominated by the inertia 

of the unconstrained root region of the structure, with a corresponding alteration in mode 

shapes and natural frequencies. This explanation is supported by the observation that 

mode shapes in this spring stiffness region are less clearly defined in terms of either the 

cantilevered or free-free descriptions and approach more coupled representation.  

The observed trending of torsional natural frequency towards zero with 

decreasing boundary condition stiffness represents a real-life risk for operational aircraft 

in the form of aeroelastic instability—known as divergence if the instability is static and 

flutter if the instability is oscillatory. The lift generated by a wing depends on angle-of-

attack (i.e., angle of the wing chord relative to the direction of chordwise air flow), with 

lift generally increasing with angle of attack and vice versa. The angle-of-attack in turn is 

affected by activity of the torsional mode of the wing. In a properly designed wing 
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operated within design envelopes the internal elastic and damping forces will effectively 

react the aerodynamic lift and torsional rotation forces to create a stable system. 

However, if the primary torsion mode couples with a primary bending mode of the wing 

the interaction of wing bending and angle-of-attack can lead to greatly increased external 

forces and divergence or flutter. Divergence is characterized as the condition where static 

lift forces increase the wing’s angle-of-attack, creating further lift and rotation until the 

aerodynamic forces exceed internal elastic forces and the structure fails—essentially the 

wing twists off of the aircraft. In the case of flutter, the internal elastic forces react the 

increasing lift on the upward vibrational bending cycle but in doing so cause negative 

wing rotation and increasingly negative lift on the downward bending cycle. If the lift is 

in phase with the bending oscillations the result is a constructive feedback loop that can 

rapidly overcome internal damping forces and lead to structural failure after several 

cycles. The current boundary condition study shows that, even for a wing with well 

separated primary torsion and bending modes in the idealized cantilever condition, the 

modes will couple as the boundary condition softens leading to conditions for instability.  

Based on the results in Figure 7-13, the 1st torsion mode appears to cross the 2nd 

bending mode for the current wing model at a root spring stiffness of approximately 103 

N/m. This is additionally the region where a shift in the trending of bending natural 

frequencies is observed. The model was run at with spring stiffness set to 103 to further 

investigate the modes and coupling under a mixed cantilever/free-free boundary 

condition. The modal results, presented in terms of natural frequencies and mode shapes 
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in Figure 7-14, show significant modal coupling. The mode corresponding to 1st bending 

in the cantilever case is now a pure spring bending mode at 1.45 Hz with negligible 

elastic bending in the wing structure. Rigid torsional rotation of the wing occurs in two 

modes—the first at 12.8 Hz with the axis of rotation near the center of gravity of the wing 

structure and the second, corresponding more properly to 1st torsion in the bending case, 

at 25.9 Hz. The mode that turns into 2nd bending in the free-free configuration is 

dominated by 1st cantilevered bending mode elastic deformation at 19.3 Hz. Mode 6 is 

heavily coupled between 2nd bending and 1st torsion and, at 27.3 Hz, the natural 

frequency is very close to the crossing point between 1st torsion and 2nd bending observed 

in Figure 7-13. If the current wing was flown and lower rigid bending and torsion modes 

were adequately constrained, this coupled mode could be a dangerous case for flutter. 

The coupled modes at this spring stiffness level also corroborate the change in bending 

mode trending noted previously in Figure 7-13. 

7.3.3 Analytical Damage Studies 

The impact of spar-skin disbond damage starting from the root was investigated 

by running several cases with increasing levels of damage. Damage was applied to the 

bottom spar-skin bondline based on the assumption that operational fatigue would 

manifest first on the tension side of the wing. The damage was modeled by disconnecting 

the spar-skin rigid links in the regions shown, with each row of spar-skin rigid links  
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Mode 2 – 1.45 Hz (1st Bending, Rigid) 

 
Mode 3 – 12.8 Hz (1st Torsion, Rigid 1) 

 
Mode 4 – 19.3 Hz (Coupled 1st/2nd Bending) 

 
Mode 5 –25.9 Hz (1st Torsion, Rigid 2) 

 
Mode 6 – 27.3 Hz (Coupled Bending/Torsion) 

 
Mode 6 – 58.3 Hz (2nd Bending) 

 
Mode 8 – 100.0 Hz (3rd Bending) 

 
Mode 11 – 161.9 Hz (4th Bending) 

Figure 7-14: Modal results from the baseline model in mixed cantilever/free-free configuration. 
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increasing the effective damage length by approximately 0.025 m when disconnected. 

The following five damage cases were analyzed: 

1. 0.025 m (1 row of rigid links removed) 

2. 0.05 m (2 rows of rigid links removed) 

3. 0.10 m (4 rows of rigid links removed) 

4. 0.20 m (8 rows of rigid links removed) 

5. 0.41 m (16 rows of rigid links removed) 

Figure 7-15 shows the five damage cases overlaid on the wing mesh viewed from 

the bottom. For each damage case the appropriate number of rows of spar-skin rigid links 

were disconnected and the model run for undamped normal modes. Seven of the primary  

 
 

 

Figure 7-15: Summary of spar-skin disbond damage cases (wing viewed from bottom). 
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wing modes—1st bending, 2nd bending, 3rd bending, 4th bending, 1st torsion, the first skin 

mode, and 1st chordwise bending—were then tracked across damage cases. The change in 

response for each case compared to the undamaged cantilevered response was evaluated 

based on change in natural frequency, expressed as the absolute value percentage change, 

and mode shape modal assurance criterion, calculated from 80 normal (z-axis) degrees of 

freedom from the bottom external wing surface such as would be measured during 

vibration testing on a real wing structure. The nodes used to calculate the modal 

assurance criterion are shown in Figure 7-16. 

Results from the spar-skin disbond damage study are presented in terms of change 

in natural frequency in Figure 7-17, modal assurance criterion in Figure 7-18, and 

trending of natural frequency over increasing damage size for each mode in Figure 7-19. 

It can be seen that the change in natural frequency is spread fairly uniformly across the 

observed modes, with changes ranging from a 0.16% decrease in the skin mode to a 

 

 

 

Figure 7-16: Bottom wing skin nodes used to calculate modal assurance criterion values for damage 
studies. 
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Figure 7-17: Change in natural frequency for select modes over spar-skin disbond cases (dashed line 
indicates mode shape varying from description). 

 

 

Figure 7-18: Modal assurance criterion values for select modes over spar-skin disbond cases (dashed 
line indicates mode shape varying from description. 
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Figure 7-19: Trending of select wing modes over increasing spar-skin disbond length in baseline 
finite element model (dashed line indicates mode shape varying from description). 

 
 
 

4.73% decrease in the 4th bending mode. The torsion mode was affected on the same 

order as the bending modes but did not exhibit pronounced changes of the sort that would 

present a risk for flutter. It should be noted, however, that in the 0.41 m damage case the 

torsion mode shape was significantly altered by the damage with the torsional activity 

coupled with local deformation of the disbanded skin region (indicated with a dashed line 

in the results figures). The coupled torsion mode increased in frequency compared to 

frequency decreases in all of the other cases. With the exception of the coupled torsional 

mode and 4th bending mode in the 0.41 m damage case, the damage produced relatively 

low changes in mode shape, with modal assurance criterion values ranging from 0.95 to 
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1.0. These results together show that the localized damage softens the system response 

but does not have a high impact on the global mode shapes, even as the damage gets 

large. The discrepancy occurs because the natural frequency is heavily dependent on 

localized strain energy activity at the wing root, where the damage is located, but overall 

mode shape is primarily influenced by distributed system properties, which are not highly 

impacted by the localized damage. 

A second set of damage cases was analyzed to study the effect of skin-core 

disbonds in the plane skin regions of the wing. This sort of damage can result from blunt 

force impact on the plane composite sandwich structures which causes the core to crush, 

degrade, and/or disbond from the skin while leaving the skin laminates intact. 

Operational aircraft see many opportunities for impact to their external primary structures 

during ground operations. Blunt-force impact in particular is dangerous in practice for 

composite aircraft since even large internal damage cases can be invisible from the 

exterior and may go undetected.  

Five damage cases were introduced sequentially by disconnecting rigid links 

between the inner and outer sandwich structure laminates and core from the top wing skin 

in the regions shown in Figure 7-20. The top wing was chosen because of the greater 

chance of a falling object causing the damage as opposed to the impact coming from 

underneath the wing. In each case, rigid links were disconnected in rows of three nodes 

leaving the skin and core uncoupled across the entire width of the between-spar sandwich  
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Figure 7-20: Summary of laminate-core disbond damage cases (wing viewed from top). 

 
 
 

region (approximately 0.10 m in width). The first row of nodes disconnected was situated 

approximately 0.64 from the wing root and for each subsequent damage case two rows of 

nodes were disconnected spreading out from the initial row. The resulting damage cases 

were rectangular in shape with width approximately 0.10 m and length as follows: 

1. 0.05 m (1 row of rigid links removed) 

2. 0.10 m (3 rows of rigid links removed) 

3. 0.15 m (5 rows of rigid links removed) 

4. 0.20 m (7 rows of rigid links removed) 

5. 0.25 m (9 rows of rigid links removed) 

As with the spar-skin disbond damage study the impact on system response was 

evaluated based on change in natural frequency, expressed as the absolute value 
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percentage change, and mode shape modal assurance criterion, calculated using the 

normal degrees of freedom from the 80 bottom external wing surface nodes shown in 

Figure 7-16.  

The results are presented in terms of in terms of change in natural frequency in 

Figure 7-21, modal assurance criterion in Figure 7-22, and trending of natural frequency 

over increasing damage size for each mode in Figure 7-23. The laminate-core disbond 

damage cases show a lower-level impact to the system modes compared to the spar-skin 

damage cases, despite similar or larger overall areas of damage in each case. Natural 

frequencies for the seven modes of interest are decreased by at most 1.6% for the  

 
 

 

Figure 7-21: Change in natural frequency for select modes over laminate-core disbond cases. 
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Figure 7-22: Modal assurance criterion values for select modes over laminate-core disbond cases. 

 

 

Figure 7-23: Trending of select wing modes over increasing laminate-core disbond length in baseline 
finite element model. 
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chordwise mode and at most by 0.4% for the other modes. The global mode shapes (as 

measured on the bottom skin) are minimally altered, with the lowest modal assurance 

criterion value calculated to be 0.98 on the 1st chordwise bending mode and most other 

modes seeing effective modal assurance criterion values of unity. The primary reason for 

these relatively small changes is because the damage cases do not interact with regions of 

high strain energy in the structure, such as spar regions at the root or in-plane laminate 

properties in the external wing skin laminates. In practice, this type of damage will 

impact local bending of the otherwise unsupported wing skins and will thus affect the 

ability for the wing to react aero loads and to maintain airfoil shape in operation—both 

consequences which will affect aircraft performance and could lead to full system failure 

in the event that operational loads cause the damage to propagate. The local nature of the 

damage will, however, show increasingly greater impact on higher order, especially those 

related to bending of the sandwich skin regions. 

Both of the studied damage scenarios will change natural frequencies and mode 

shapes to some extent. The physical damage, however, will also change damping 

characteristics in the region of damage and will cause new local modes to develop. The 

result is that, even for the smaller damage cases, the system frequency response functions 

will be impacted, especially in regions near the damage. The current damage detection 

algorithm can therefore be expected to perform well on these and similar damage cases 

for the composite wing structure.  
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 Experimental Manufacturing 7.4

The physical test-bed scaled wings were manufactured at UCSD’s Composites 

and Aerospace Structures Laboratory by the author with help from a rotating team of 

UCSD undergraduate and graduate students. The laminates were cured at Pratt & 

Whitney Composites in San Diego, CA. After curing, the components pieces were 

individually vibration tested in free-free configuration and quasi-static coupon tests were 

conducted to produce material properties for the material systems.  

7.4.1 Manufacturing of Component Pieces and Assembly 

All laminate pieces were made from a Hexcel graphite-epoxy prepreg system 

(Toray M46J graphite fibers with Hexcel HexPly 6376 epoxy resin matrix) in a 5-harness 

satin weave, with the bulk material stored at -14F in 1.52 meter wide rolls. The skins 

were built using Hexcel Nomex honeycomb core (HRH-10-1/8-3.0) co-cured with Cytec 

1515 epoxy film adhesive through their sandwich areas. The components were cured 

using one-sided aluminum molds which were machined from purpose-built CAD 

reference files. Figure 7-24 shows the skin molds which were each fabricated from two 

sealed pieces because of part-size limitations of the mill.  

 

 



www.manaraa.com

416 

 

 

Figure 7-24: Machined aluminum molds for layup and cure of the composite wing skins. 

 

The lay-up manufacturing process for all laminate components proceeded through 

the following steps: 

1. Prepreg plies were cut to shape using plastic templates and razor blades, with 

backing paper and protective surface film layers retained, as shown in Figure 

7-25. 

2. Full-size sandwich structure core pieces were cut to shape out of single pieces 

using templates and a hand-held razor. The edges were cut with a 45° chamfer 

for laminate close-outs as shown in Figure 7-26. 

3. Film adhesive pieces, one for each side of the sandwich core, were cut using 

straight-edges and a razor with backing paper and protective surface film 

layers retained on the pieces. 
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Figure 7-25: Wing skin laminate plies being cut to shape using a custom-made plastic template. 

 

4. Mold surfaces were cleaned using isopropyl alcohol and then prepared using 3 

to 5 coats of Chemlease 41 mold release agent and allow to dry. 

5. Vacuum bagging material cut to shape, including peel-ply, perforated release 

film, breather material, and vacuum bagging material.  
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Figure 7-26: Close-up view of Nomex honeycomb sandwich core with chamfered edges. 

 

 

6. The first ply for each component piece were applied to the mold by aligning 

the pre-cut pieces along a common edge, removing backing paper, and 

pressing the ply down from the alignment edge across the full surface to 

remove large pockets of air. Edges were compressed and the ply smoothed 

using hand-pressure as the play was laid down to prevent bridging and air 

pockets. For the lower wing skin the leading edge was formed around the 

joggle tool bolted to the edge of the mold, as shown in Figure 7-27, to form 

the overlapping leading edge bondline.  
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Figure 7-27: Close-up view of bottom wing skin ply formed against the leading-edge joggle tool. 

 

 

7. Vacuum sealant tape (a.k.a., chromate) was applied around the edges of the 

mold with backing paper left intact on the exposed surface. Vacuum cup base 

pieces were installed between the breather material and vacuum bag on an 

exposed portion of the mold inside the sealant tape boundary. Debulking was 

then applied by applying peel-ply, breather, and temporary vacuum bag onto 

the ply stack; removing the sealant tape backing paper; loosely sealing the 

vacuum bag to the mold; and drawing vacuum for 5 minutes. This step was 

applied after application of every one to three laminate plies. 
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8. After each debulking procedure the vacuum layers were removed, the layup 

process continued. For the sandwich skins, after application of the first ply the 

core alignment tool was installed, as shown in Figure 7-28. The lower film 

adhesive layer, core layer, and top film adhesive layer were then applied for 

the fore and aft sandwich regions, and alignment tool removed. The correctly 

placed core layers are shown in Figure 7-29 for the top wing skin. For the 

spars, the built-up 0° spar caps were added to the laminates before addition of 

the final full ply, as shown in Figure 7-30 for the main spar (with the bare aft 

spar mold shown to the right). 

9. After the final ply was added to each component laminate, thermo-couple 

wires were installed by butting several millimeters of exposed thermo-couple 

wire up against the edge of the laminate stack in several distributed locations. 

Several centimeters of strain relief slack were retained inside the vacuum bag 

area and the insulated thermocouple wire was sandwiched against the sealant 

tape with an additional piece of sealant tape. The exterior thermocouple wire 

casing was stripped through the sealing region in each case to prevent a leak 

path. The top ply surface film was removed and peel ply, release film, and 

breather added to the laminate surface. Vacuum cup bases were installed on 

additional padding layers of breather in distributed locations around the layup. 

The final cure vacuum bag was applied to the mold, sealant tape backing 

paper removed, and the vacuum bag sealed to the exposed sealant tape with 
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Figure 7-28: Top wing skin core location tools temporarily placed on laminate during layup. 
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Figure 7-29: Top wing skin core sections with honeycomb encased in film-adhesive after placement 
and before addition of the top sandwich ply. 

 

 

Figure 7-30: Main spar laminate on the mold on the left side with the bare aft spar mold on the right 
during layup. 
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regularly spaced ‘rabbit-ear’ folds for strain relief in the vacuum bag to 

prevent bridging of the vacuum bag. In some cases, the vacuum bag was 

applied as an folded envelope of the entire mold with the bag then sealed to 

itself instead of to the mold (envelope bagging). 

10. Vacuum was applied to each complete mold-laminate setup slowly while 

ensuring all plies and vacuum cure materials remained aligned properly as the 

vacuum settled. 

11. Vacuum carrying capability was tested for each part using a vacuum gauge on 

one of the vacuum ports, with vacuum deemed to be adequate when the part 

would at a maximum lose 5 in-Hg in 5 minutes. In cases of inadequate 

vacuum the leaks were investigated using an acoustic leak detector and either 

fixed or the vacuum bag replaced until adequate vacuum could be achieved. 

The parts were then stored under vacuum until transportation and cure.  

Cure was performed for all pieces in a large autoclave at Pratt & Whitney 

Composites in San Diego, CA. The cure location was several miles from the layup 

location and the molds were transported via covered truck and then reattached to vacuum 

lines at the cure facility. Once placed together in the autoclave, shown in Figure 7-31, 

autoclave vacuum lines were attached to the molds and vacuum holding capability 

verified through the autoclave vacuum system. Following manufacturer instructions for 

the laminate system, each cure was performed at 180°C and 0.62 MPa with controlled 
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Figure 7-31: Wing components being prepared for cure in an autoclave at Pratt & Whitney 
Composites. 

 

ramps and a dwell time of 2 hours. After internal autoclave pressure had reached 1 atm 

the vacuum lines were vented to the atmosphere to allow gasses produced during the 

exothermic resin cure process to escape from the laminates. After completion of the cure 

cycle the cooled parts, still bagged on the molds as shown in Figure 7-32, were removed 

from the autoclave and transported to UCSD. The spots which can be seen on cured parts 

in Figure 7-32 are from excess laminate resin bleeding through the perforated release film 

and into the breather material during cure. This process increases fiber volume fraction 

and, therefore, structural performance of the parts. The cured wing component pieces 

were finally removed from the molds and the resin flashing lightly sanded from the 
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Figure 7-32: Bagged wing components on molds post-cure. 



www.manaraa.com

426 

 

laminate edges to reduce excess mass and make the parts safe for handling. Examples of 

the completed component pieces are shown along with an assembled wing in Figure 7-33. 

Measuring representative pieces with calipers showed that the prepreg plies cured to an 

average of 0.25 mm thick each and the honeycomb remained approximately 3.0 mm 

thick.  

After modal testing of the individual components—described in Section 7.4.2—

the components were assembled in a secondary adhesive bonding step. Before starting 

assembly a small constant right-angle triangle cross section wedge 0.036 m wide was cut 

from Rohacel 51IG foam to provide a bonding surface down the length of the trailing 

edge. Bonding of the wing components was then accomplished through the following 

procedure for each wing. 

1. All laminate bonding surfaces were prepared by wiping with isopropyl alcohol 

using lint-free rags, scrubbing with Scotchbrite scouring pads, and wiping 

again with isopropyl alcohol until all surfaces could pass a water break test. 

The water break test was administered by wiping a small quantity of distilled 

water on the surface and verifying that the water wets evenly out across the 

surface without beading. Beading of the water indicates oil-based 

contamination on the bonding surface down to the microscopic level which 

can prevent an adequate bond. Regions of the bonding surface failing the  

 



www.manaraa.com

427 

 

 

Figure 7-33: An assembled wing (far left), and four component wing pieces (from left-to-right): top 
skin, main spar, aft spar, bottom skin. 
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water break test were subject to additional cleaning and scouring using the 

same isopropyl alcohol wipe, Scotchbrite scour, isopropyl alcohol wipe 

process until they passed the water break test.  

2. Both sides of all bonding surfaces, including those of the trailing edge foam 

wedge, were coated with a layer of layer Hysol EA9394 structural adhesive 

approximately 1 to 3 mm thick applied using flat wooden applicator sticks, as 

shown in Figure 7-34. 

3. The parts were assembled using the lower wing skin mold as a tool, as shown 

in Figure 7-35, and sandbags applied on top of the to the top wing skin to 

provide constant distributed compressive force. The bonding assembly was 

left to cure for at least 24 hours to reach handling strength and at least 7 days 

to reach full structural strength.  

After curing to at least handling strength the assembled wing was removed from 

the bonding assembly and excess adhesive flashing sanded from exposed boundaries 

where required. Views of completed wings are shown in Figure 7-36 and along with the 

author in Figure 7-37. The final assembled wing mass was measured to be approximately 

2.12 kg for each wing. 
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Figure 7-34: Application of structural adhesive onto wing component bondlines. 

 

 

 

Figure 7-35: Assembly of component pieces with adhesive applied into the bonding assembly. 
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(a) 

 

(b) 

 

 

(c) 

 

Figure 7-36: Views of the assembled test-bed wing structure: (a) entire wing (shown in perspective 
plan view), (b) wing root, (c) wing tip. 
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Figure 7-37: A complete assembled wing held by the author for scale. 

 

7.4.2 Coupon Testing  

A series of material-property testing tensile coupons were fabricated and tested 

according to ASTM: D 3039 [7-5] to produce strength and stiffness data for modeling. 
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Sixteen coupons were tested in total, each with duel longitudinal strain gauges to monitor 

longitudinal strain and bending and a single transverse strain gauge to monitor transverse 

strain. The coupons were given constant displacement loading to failure using a hydraulic 

tensile load actuator. These measurements were averaged and combined to give in-plane 

axial stiffness and strength data (E11, E22; XT1, XT2) and Poisson’s ratios (ν12, ν21).  

Additionally, a 0.254×0.305 m flat sandwich plate made was manufactured with 

the same laminate, core, adhesive and cure as the wing components. Vibration testing and 

a preliminary model correlation by the Newton Raphson method to convergence with 

mean relative error of 0.5% over the first 10 modes produced an estimate of effective 

material property values for the sandwich structure (E11, E22, ν12, G12, for the laminate; 

E23, E13 for the core). These physical material properties were assumed to be more 

accurate than using the plain laminate properties for the sandwich skin laminates which 

can lose stiffness because of co-cure with the cell-structure honeycomb.  

Results for each material test are provided in Table 7-7 and Table 7-8 

respectively. The plane laminate properties are higher than the properties assumed for the 

baseline finite element model. Additionally, the plate correlation suggests reduced 

stiffness in the sandwich laminates. Both material tests agree that, despite this prepreg 

system having a symmetric weave, properties in the tow (11) direction of the prepreg 

were higher than their transverse (22) counterparts. 

 



www.manaraa.com

433 

 

 

Figure 7-38: Material property testing coupons with strain gauges. 

 

 

Table 7-7: Material coupon testing results for plain laminate regions. 

 Average results Standard deviation Samples 

E11 (GPa) 128 3.94 3 

E22 (GPa) 123 0.779 3 

v12 0.039 0.016 3 

v21 0.030 0.015 3 

XT1 (GPa) 0.717 0.0751 3 

XT2 (GPa) 0.621 0.0198 3 
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Table 7-8: Material properties for sandwich structure derived from correlation of a representative 
plate structure and finite element model. 

 E11     
(GPa) 

E22   
(GPa) v12 

G12  
(GPa) 

G23 
(GPa) 

G13 
(GPa) 

ρ 
(g/cm3) 

Sandwich 
Structure 

Skin 93.8 84.8 0.15 5.68 4.14* 4.14* 1.77 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 .0288 .0556 0.140 

* Properties are very low sensitivity, so generic value was assumed; values have negligible 
impact on response 

 
 

 Vibration Testing 7.5

The final component of the composite wing test-bed is a vibration testing setup 

configured to modally characterize both independent wing components in free-free 

configuration before assembly and the assembled wings in cantilevered configuration. 

Vibration testing of the wing component structures before assembly was performed to 

produce data for part-to-part variability studies and finite element model correlation on 

the component level. Once wings were assembled, vibration testing in a flight-like 

cantilevered configuration was enabled with the expectation to provide data for studying 

manufacturing variability of the structural assemblies, model correlation, sensor studies, 

damage analysis, and structural health monitoring algorithm development and evaluation.  

All vibration testing was performed using a Polytec scanning laser Doppler 

vibrometer (PSV-200 system; Vibrascan OFV 055 scanning head), with excitation 

provided by a 1.36 kg LDS-V203 electrodynamic shaker. The shaker-part connection was 

made using a 0.152 m stinger with low bending stiffness and high axial stiffness attached 
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to a Kistler 9712A50 force transducer, which was super-glued to the driving point surface 

via a small bolt section as shown in Figure 7-39. Predetermined measurement points were 

marked on the exterior measurement surfaces of the test-pieces using small squares of 

diffusely reflective adhesive tape measuring approximately 5 mm on a side to increase 

reflectivity and effectiveness of the laser. For all measurement points only the degree-of-

freedom facing the laser was measured. This setup produced vibration corresponding to 

primary bending and torsional modes of the wings, as desired, and also allowed each test 

to be performed in a single run without repositioning the laser. A schematic 

representation of a generic laser vibrometer vibration test setup is shown in Figure 7-40. 

For each test the test-piece was situated in the desired orientation with the test 

surface facing horizontally, the shaker was suspended behind the test-piece with the 

stinger lightly touching the excitation degree-of-freedom, and the laser vibrometer 

scanning head situated perpendicularly facing the nominal measurement degree-of-

freedom plane at a distance of approximately 5 – 8 m. The scan points were programmed 

into the acquisition software and matched to the video feed of the test-piece using the 

built-in acquisition software module. The test was run by starting the shaker excitation, 

allowing the test-piece to reach steady-state vibration, and enabling the scan and 

acquisition program. The acquisition software then automatically took data at each point 

for the specified number of averages sequentially for all measurement points. H1 

mobility (velocity) average system transfer functions were saved at each measurement 

point in the frequency domain. Modal parameter estimation of the measured vibration 
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data was performed using ME’scopeVES [7-6] to produce experimental frequencies, 

mode shapes, and damping ratios. Vibration test parameters for each component and the 

assembled are given in Table 7-9. 

 

 

 

Figure 7-39: View of the electrodynamic shaker and force transducer attachment method, shown 
during component vibration testing of the top wing skin. 
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Figure 7-40: Schematic representation of a generic laser vibrometer vibration test setup. 

 

 

 

 

Table 7-9: Modal test parameters for wing components and the assembled wing. 

 Frequency 
Range (Hz) 

Resolution 
(Hz) 

Number of 
averages 

Number of scan-
points 

Top skin 5 – 200 0.0625 6 80 
Bottom skin 5 – 200 0.0625 6 80 

Main spar 10 – 400 0.1250 8 36 

Aft spar 10 – 400 0.1250 8 36 

Assembled wing 5 – 500 0.1563 6 80 
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7.5.1 Wing Component Vibration Testing 

The wing component pieces were tested individually with free-free boundary 

conditions approximated by suspending each piece using approximately 1.22 m of 

0.00635 m thick elastic surgical tubing and 0.2 m of 2.72 kg–weight fishing line. The 

lines were connected to the test pieces using super-glue for the skins and elastic bands for 

the spars. The two skins were each assigned 80-point measurement grids with 8-points 

across wing width and 10-points down wing length following the bond line geometry, as 

shown in Figure 7-41. The measurement point locations were chosen to approximately 

match external surface nodes in the finite element model. The spars were assigned 36-

point scan grids—12 points evenly spaced down the length with 3 points across the 

width—with response measured normal to the top cap to emphasize assembled-wing 

bending behavior, as shown in Figure 7-42. Resulting measured natural frequencies for 

the four wing components are given in Table 7-10. A screen shot of the modal parameter 

estimation process for the top wing skin is given in Figure 7-43. The figure shows curve-

fit magnitude frequency response functions in red superimposed on the black frequency 

response functions with the curve-fit functions and measured functions from all degrees-

of-freedom overlaid on the same plot. Operational deflection shapes matching the first 

three bending modes are additionally shown inlaid at the top of the figure with arrows 

pointing to the peaks they represent. 
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Figure 7-41: Top wing skin components in free-free scanning laser Doppler vibrometer modal testing 
configuration. 

 
 

 

Figure 7-42: Main spar component in free-free scanning laser Doppler vibrometer modal testing 
configuration. 

 

  

 

Figure 7-43: Example of curve-fit frequency response functions during modal parameter estimation 
for the top wing skin. 
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Table 7-10: Measured natural frequencies for wing components. 

Mode 
Top skin Bottom skin Main spar Aft spar 

(Hz) (Hz) (Hz) (Hz) 

1 12.4 4.4 22.2 11.9 
2 23.9 11.5 33.8 24.4 
3 28.7 21.8 46.1 48.3 
4 35.0 23.4 59.0 62.3 
5 40.6 34.2 70.2 75.2 
6 42.3 35.6 101.9 103.5 
7 48.8 41.6 116.4 133.5 
8 51.8 47.6 131.7 137.4 
9 59.0 49.5 154.4 151.0 
10 66.7 61.4 175.3 187.7 
11 73.8 63.6 186.8 239.8 
12 75.6 76.6 222.3 314.6 
13 80.9 83.4 240.0 308.8 
14 82.7 88.3 251.7 357.7 
15 88.6 90.2 282.3 333.9 
16 91.4 102.9 308.9 385.4 
17 99.9 106.3 343.6 * 
18 108.6 115.2 359.5 * 
19 118.8 * * * 
20 124.6 * * * 

 

7.5.2 Assembled Wing Vibration Testing  

A cantilever mounting fixture was developed for vibration testing of the 

assembled wing. The fixture was designed to emulate the fuselage attachment of 

detachable wings in an operational unmanned aerial vehicle—fixed on the main spar by 

clamping of the spar caps and pinned on the aft spar by contact at a point. The fixture is 

shown with the assembled wing installed in test configuration in Figure 7-44. The fixture 
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was built on a section of steel I-beam which could be attached to a table by fixing the 

bottom flange. A piece of aluminum machined to match the interior surface of the 

protruding portion of main spar was bolted to the top surface of the I-beam. The wing 

was fixed to the machined piece of aluminum by placing flat pieces of aluminum on the 

exposed outer surfaces of the spar caps which were covered in a thin soft layer of 

cardboard to protect the laminate surfaces and aid with load distribution. The aluminum 

plates were then clamped at several locations to sandwich the spar caps as shown in 

Figure 7-45. A small block of aluminum machined to match the interior surface of the aft 

spar was inserted 25 mm into the aft spar cavity and fitted to the vertical wing-side 

surface of the I-beam web with a pin to resist torsional motion of the wing.  

Vibration testing of the assembled wing was performed with the wing mounted on 

the cantilever fixture as shown in Figure 7-44 with the bottom skin facing the laser 

vibrometer. Vibration measurements were made using the same the degrees-of-freedom 

set used for the bottom wing skin component vibration test. The measurement point 

coordinates are given relative to an origin at the wings leading edge root in Table 7-11 

based on the numbering scheme shown schematically in Figure 7-46. Vibration test 

parameters were previously presented in Table 7-9.   

Table 7-12 gives the first five natural frequencies, modal damping ratios, and 

mode shape descriptions for the assembled wing. The mode shapes are additionally 

presented in Table 7-13 for all measurement degrees-of-freedom. The modes can be seen 

to generally agree with the results of the finite analysis presented in Section 7.3.2, albeit  
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Figure 7-44: View of assembled wing in cantilever test configuration. 

 

 

 

 

Figure 7-45: Detail of cantilever test fixture. 
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Table 7-11: Degree-of-freedom locations for cantilevered wing vibration test  
(DOF = degree-of-freedom). 

DOF x (m) y (m)  DOF x (m) y (m) 
1 0.010 -0.010  41 0.013 -0.188 
2 0.274 -0.015  42 0.272 -0.184 
3 0.516 -0.022  43 0.519 -0.177 
4 0.784 -0.030  44 0.781 -0.170 
5 1.023 -0.038  45 1.022 -0.166 
6 1.290 -0.045  46 1.290 -0.159 
7 1.536 -0.053  47 1.533 -0.152 
8 1.794 -0.064  48 1.796 -0.148 
9 2.051 -0.071  49 2.051 -0.141 
10 2.297 -0.079  50 2.298 -0.138 
11 0.008 -0.051  51 0.017 -0.250 
12 0.272 -0.055  52 0.273 -0.239 
13 0.518 -0.059  53 0.520 -0.229 
14 0.783 -0.060  54 0.782 -0.218 
15 1.023 -0.067  55 1.023 -0.211 
16 1.290 -0.075  56 1.292 -0.197 
17 1.536 -0.075  57 1.532 -0.186 
18 1.794 -0.083  58 1.795 -0.176 
19 2.052 -0.087  59 2.051 -0.166 
20 2.298 -0.094  60 2.298 -0.155 
21 0.010 -0.096  61 0.019 -0.316 
22 0.272 -0.096  62 0.278 -0.301 
23 0.518 -0.096  63 0.522 -0.290 
24 0.783 -0.097  64 0.782 -0.273 
25 1.023 -0.100  65 1.022 -0.259 
26 1.291 -0.100  66 1.291 -0.241 
27 1.537 -0.101  67 1.535 -0.224 
28 1.795 -0.104  68 1.794 -0.207 
29 2.054 -0.105  69 2.050 -0.193 
30 2.297 -0.105  70 2.297 -0.176 
31 0.009 -0.131  71 0.019 -0.384 
32 0.271 -0.131  72 0.278 -0.366 
33 0.518 -0.128  73 0.522 -0.348 
34 0.783 -0.124  74 0.781 -0.330 
35 1.023 -0.124  75 1.022 -0.310 
36 1.292 -0.124  76 1.291 -0.286 
37 1.535 -0.120  77 1.534 -0.265 
38 1.794 -0.123  78 1.794 -0.241 
39 2.052 -0.120  79 2.050 -0.217 
40 2.299 -0.120  80 2.294 -0.196 
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Figure 7-46: Degree-of-freedom numbering scheme and coordinate system orientation for 
cantilevered wing vibration test. 

 
 
 
 
 

Table 7-12: Description of modes for cantilevered wing vibration test . 

Mode 1 2 3 4 5 

ωn (Hz) 7.4 31.7 67.6 110 262 

ζn (%) 0.62 0.86 0.48 1.1 0.21 

Description 1st Bending 2nd Bending 3rd Bending 4th Bending Torsion mixed 

 

 

 

with slightly lower frequencies for all modes. The decrease in natural frequency can be 

attributed to two main factors: material properties and boundary condition. The coupon 

testing presented in Section 7.4.2 suggest that the primary laminate stiffness properties in 

the wing spars are actually slightly higher than those assumed for the baseline finite 

element model studies, even though the sandwich laminate stiffnesses may be lower. 
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Overall measured wing mass also had negligible error compared to the finite element 

model and so material properties alone do not explain the difference. The physical wing 

bondlines on the other hand are not likely to be as stiff as the idealized rigid links used in 

the finite element model which could have an effect, although not enough to fully explain 

the difference in natural frequencies. The most likely factor is therefore compliance in the 

cantilevered boundary condition compared to the fixed constraint used in the finite 

element model which is believable considering that the cantilever mount was clamped to 

a table and included a thin but compliant layer of cardboard protection around the spar 

laminates. Comparing the measured modes to results of the boundary condition stiffness 

study presented in Section 7.3.2 suggests that, if the effect of material property 

differences is ignored, the true physical cantilever mound had an effective stiffness on the 

order of 103 N/m. The relatively high frequency of the first measured torsion mode also 

suggests that the true 1st torsion mode was not correctly measured. This could have 

occurred because of the vibration test excitation being inadvertently placed at a region of 

low activity in the 1st torsion mode which would have caused response of that mode to be 

similarly low. Inspection of the baseline finite element model mode shapes and natural 

frequencies further suggests that the first measured torsion mode is in fact 2nd torsion. 
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Table 7-13: Measured mode shapes for cantilevered wing (DOF = degree-of-freedom). 

 Mode   Mode 
DOF 1 2 3 4 5  DOF 1 2 3 4 5 

1 0.01 0.06 0.08 0.14 0.03  41 0.25 0.34 0.41 0.34 0.62 
2 0.01 0.09 0.05 0.10 0.15  42 0.27 0.49 0.21 0.14 0.19 
3 0.27 1.00 0.93 1.00 0.28  43 0.14 0.52 0.13 0.42 0.24 
4 0.77 1.00 0.95 0.99 0.37  44 0.07 0.45 0.37 0.29 0.12 
5 0.03 0.03 0.18 0.09 0.36  45 0.04 0.32 0.46 0.05 0.35 
6 0.09 0.16 0.25 0.10 0.42  46 0.03 0.20 0.39 0.29 0.26 
7 0.09 0.29 0.17 0.35 0.18  47 0.84 0.96 1.00 0.96 0.94 
8 0.21 0.36 0.03 0.44 0.18  48 0.39 0.46 0.23 0.07 0.07 
9 0.13 0.35 0.32 0.21 0.30  49 0.03 0.07 0.26 0.20 0.25 
10 0.31 0.22 0.50 0.20 0.24  50 0.15 0.32 0.22 0.32 0.13 
11 0.48 0.08 0.38 0.43 0.50  51 0.27 0.06 0.34 0.46 0.23 
12 0.40 0.52 0.16 0.02 0.63  52 0.50 0.50 0.19 0.01 0.42 
13 0.00 0.04 0.37 0.49 0.04  53 0.18 0.40 0.01 0.42 0.19 
14 0.00 0.01 0.24 0.37 0.01  54 0.09 0.27 0.15 0.37 0.18 
15 0.01 0.03 0.11 0.17 0.04  55 0.04 0.02 0.17 0.06 0.46 
16 0.07 0.19 0.31 0.03 0.39  56 0.40 1.00 0.92 1.00 0.17 
17 0.48 0.24 0.47 0.23 0.06  57 0.56 0.51 0.19 0.02 0.53 
18 1.00 0.98 0.96 1.00 0.51  58 0.42 0.23 0.48 0.21 0.10 
19 0.51 0.98 0.98 0.99 0.67  59 0.07 0.17 0.27 0.06 0.37 
20 0.55 0.96 0.99 0.98 0.81  60 0.17 0.37 0.31 0.20 0.22 
21 0.03 0.11 0.36 0.30 0.28  61 0.03 0.05 0.21 0.14 0.25 
22 0.04 0.23 0.40 0.04 0.39  62 0.08 0.30 0.20 0.33 0.16 
23 0.14 0.35 0.30 0.29 0.08  63 0.22 0.38 0.01 0.42 0.17 
24 0.18 0.43 0.06 0.42 0.24  64 0.28 0.07 0.35 0.44 0.36 
25 0.23 0.41 0.26 0.18 0.02  65 0.16 0.38 0.29 0.19 0.14 
26 0.31 0.26 0.45 0.25 0.31  66 0.53 0.03 0.32 0.53 0.18 
27 0.46 0.05 0.33 0.49 0.04  67 0.01 0.11 0.03 0.08 0.25 
28 0.46 0.49 0.21 0.02 0.28  68 0.55 0.53 0.15 0.03 0.73 
29 0.01 0.02 0.24 0.29 0.34  69 0.58 0.09 0.39 0.43 0.61 
30 0.02 0.17 0.48 0.40 0.82  70 0.19 0.21 0.52 0.19 0.35 
31 0.05 0.31 0.57 0.14 0.56  71 0.32 0.34 0.34 0.23 0.38 
32 0.09 0.43 0.42 0.31 0.46  72 0.09 0.35 0.05 0.45 0.19 
33 0.13 0.50 0.16 0.45 0.64  73 0.06 0.14 0.22 0.13 0.46 
34 0.24 0.47 0.22 0.17 0.25  74 0.01 0.15 0.47 0.38 0.18 
35 0.28 0.31 0.43 0.33 0.85  75 0.08 0.27 0.49 0.09 0.27 
36 0.38 0.02 0.31 0.57 0.34  76 0.13 0.39 0.37 0.27 0.05 
37 0.00 0.10 0.27 0.35 0.20  77 0.12 0.46 0.11 0.40 0.27 
38 0.40 0.93 1.00 0.93 1.00  78 0.25 0.43 0.23 0.16 0.12 
39 0.38 0.45 0.24 0.10 0.12  79 0.23 0.29 0.44 0.28 0.57 
40 0.38 0.03 0.29 0.59 0.31  80 0.53 0.47 0.22 0.04 0.12 
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 Discussion 7.6

The motivation for creating the composite wing test-bed was threefold: (1) to 

investigate composite unmanned aerial vehicle wing response under various structural 

conditions, including with evolving damage; (2) to study efficacy of certain experimental 

distributed sensor systems, including those based on piezo-electric elements and fiber 

optic sensors, and understand their effect on wing response; and (3) to guide development 

of hardware systems and algorithms for structural health monitoring and prognosis. The 

author’s role in this project was focused on developing, modeling, analyzing, and testing 

the test-bed structure (presented throughout the current chapter) and, separately, 

developing technology for damage identification that could be applied to the test-bed as 

an analog for similar operational structures (developed throughout the remainder of the 

dissertation). Other aspects of the project, especially those related to distributed sensor 

systems and structural health prognosis, were pursued by project team-members.  

Although aspects of the original test-bed goals were realized at the time of 

writing, more can be accomplished towards development and refinement of structural 

health monitoring and prognosis technology through further development and study of 

the test-bed . Recommendations for future work include the following.  

1. Assemble the remaining wings, including installation of candidate distributed 

sensor systems following the development in [7-1].  
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2. Perform further modal vibration testing to quantify the manufacturing 

variability inherent to the wings and assess the impact of embedded sensor 

systems on response.  

3. Perform damage identification studies using the algorithm presented in the 

previous chapters of this dissertation to further validate the algorithm and 

guide future improvements. 

4. Use results of progressive impact and fatigue based damage to further study, 

develop, and validate the algorithms for structural health prognosis technology 

developed by the team lead by Gobbato and Conte [7-2].  

This general roadmap shows the potential of the flexible experimental test-bed for 

structural health monitoring and prognosis developed by the Los Alamos National 

Laboratory and UCSD research teams. The extension beyond analytical capability and 

simple laboratory experiments is a necessary step towards reaching mature technology 

that can then be implemented on operational systems for refinement and validation.  

The material contained in Chapter 7 was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, Prof. Joel Conte, and Prof. Francesco Lanza di 

Scalea. The dissertation author was the primary investigator and author of this work. 
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8 CONCLUSION 

Conclusions for the dissertation are presented in five parts. First, the dissertation 

is summarized, including motivations, overarching definitions, an overview of the 

damage detection algorithm, and chapter organization. Second, primary technical 

conclusions are reiterated, roughly in the order they were reached in the dissertation. 

Third, specific novel contributions developed through the dissertation are presented. 

Fourth, recommendations for future work are presented. The final section gives closing 

remarks. 

 Dissertation Summary 8.1

The current dissertation has developed and validated technologies related to 

structural health monitoring and prognosis under the motivation of increasing safety and 

life-cycle efficiency of aerospace structures. Structural health monitoring is defined in 

this context as the process of regularly detecting, localizing, and identifying structural 

damage. Prognosis is defined as the process of using knowledge of the current damage 

state along with statistical assumptions on future operational conditions to predict useful 

life remaining. Damage identification is defined as the process of damage quantification, 

estimation of the prediction uncertainty, and structural model update. In this context, 

damage identification can be viewed either as a standalone process for understanding a 
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structure’s current damage state or as part of a larger system for ongoing structural health 

monitoring and prognosis of an operational structure.  

The primary innovation is a statistical least-squares algorithm for damage 

identification based in concepts of parameter estimation and model update. The 

dissertation’s damage identification algorithm requires the following limiting 

assumptions to be met:  

1. The target physical system must be analytically modeled as a multiple degree-

of-freedom system in the linear frequency domain. 

2. Frequency response function reference data must be available across multiple 

frequency lines and degrees-of-freedom in a way that can be replicated by the 

analytical model with acceptably low error. Environmental factors affecting 

structural and model response, for example temperature, must be normalized 

between the structural test configuration and model. For practical 

implementation, for instance on an aircraft, this likely requires testing the 

structural in a controlled environment where boundary conditions and 

environmental factors can be controlled and measured with sufficient 

accuracy to be replicated precisely in the analytical model. 

3. System properties and potential damage parameters must be modeled as 

implicit, smoothly varying parameters which are tied to dynamic system 

response in the same regime as the reference data.  
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4. The system damping must be able to be captured using a linear combination 

of structural and viscous damping matrices (albeit with no restrictions on 

proportionality). 

5. The model must be capable of producing the global frequency domain 

dynamic response of the physical structure in the baseline and damaged states 

with a lower level of error than is caused by the target damage cases being 

identified. 

Required algorithmic inputs are a structural model, a set of reference data from 

the baseline structure if the model is not sufficiently correlated to the baseline state, and a 

set of reference data from the damaged system. Any information on damage location and 

form can be included as an input, if available, but is not strictly required since the 

algorithm also determines (or refines) damage location during standard operation. If the 

analytical model does not have high enough fidelity to the baseline data it can be 

correlated using optimization based techniques, including a modified version of the 

damage identification algorithm. Once the analytical model is correlated to the baseline 

state, the damage identification algorithm uses a statistically weighted least-squares 

minimization of frequency response function based residual force vectors to update the 

structural model, thereby producing refined location information, quantification of the 

damage, estimation uncertainty, and an updated structural model.  

Damage identification has been an active field of study for approximately 40 

years at the time of writing; however, the current algorithm demonstrates advantages 
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compared to competing approaches. Since the algorithm uses frequency response 

functions as a reference data basis, it can be applied to systems with generalized and/or 

heavy damping. This ability sets the current algorithm apart from methods based on 

modal parameters, among others. Because of the connection to full-system structural 

models—e.g., dynamic finite element models—the only limitation in terms of structural 

applicability is related to computational processing power (which scales as a function of 

number of degrees-of-freedom). Large amounts of reference data can be incorporated into 

the damage identification process, producing a resilience to incoherent noise. In 

combination with the integrated method for degree-of-freedom reduction, the algorithm 

also supports successful implementation in cases where the number of degrees-of-

freedom in the model is far greater than in the reference data—a situation which is 

unavoidable for realistically sized aerospace structures. 

The dissertation began with an introduction in Chapter 1 and review of 

foundational literature in Chapter 2. The primary algorithm was developed theoretically 

in Chapter 3, including elements of damping, noise, and degree-of-freedom reduction, 

and was validated analytically on a 2 degree-of-freedom mass-spring system with 

generalized damping. The methodology was expanded to allow realistically large 

amounts of noisy data and was further validated in comparison to a selection of 

competing algorithms with positive results in Chapter 4. In Chapter 5 the algorithm was 

extended for use with finite element models and reduced degree-of-freedom reference 

data sets and was validated on a composite sandwich plate model, including parametric 
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studies and an investigation of methods for modeling damping in reduced coordinates. 

The algorithm was further extended for experimental implementation, including 

operations for initial model correlation, and was validated experimentally using a 

composite laminate plate with impact damage and a reduced coordinate data set in 

Chapter 6. Chapter 7 finally presented development of a composite unmanned aerial 

vehicle scaled-wing structural health monitoring and prognosis test bed developed as part 

of a collaborative project between Los Alamos National Laboratory and the University of 

California, San Diego.  

 Technical Conclusions 8.2

Analytical validation studies showed that the basic mechanics of the damage 

identification algorithm function as expected with low error and that the algorithm is 

capable of accurately identifying damage in the form of concurrent changes in mass, 

stiffness, and damping. The algorithm additionally functions accurately when the target 

system includes structural damping, proportional viscous damping, and/or non-

proportional generalized viscous damping. This functionality extends to potentially 

severe cases of generalized damping, so long as the damping can be modeled accurately 

using a viscous or structural damping matrix using the same degree-of-freedom basis as 

the mass and stiffness matrices.  
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Methods for approximating generalized damping using proportional models, 

including by the so-called extended Rayleigh method, can be implemented effectively in 

place of the exact damping formulations. The accuracy of these approximate methods can 

be increased by using a larger number of analysis frequency lines and/or including 

damping parameters during the identification process. In the case of severely non-

proportional viscous damping, assuming proportional damping will lead to corruption in 

the damage predictions. The algorithm contains features to help mitigate this error, 

including (1) the ability to average out the modeling error by adding analysis frequency 

lines and (2) the ability to include damping parameters into the update parameter set and 

thereby correct the damping model during damage identification. 

As shown through analytical studies on a damped eight degree-of-freedom mass-

spring system, the algorithm is capable of accurately identifying damage in cases with 

significant corruption of the reference data by incoherent noise, large numbers of damage 

identification parameters, large variations of parameter sensitivity, and coupled and/or 

overlapping modes in the underlying system. This includes when damping is non-

proportional and damage involves concurrent changes in mass, stiffness, and damping. 

Success of the algorithm in these cases is aided by several additional algorithms for 

selecting analytical frequency lines and combating numerical issues. Accuracy of the 

current algorithm was also shown to be superior to that of a selection of competing 

algorithms from the literature when they were all given the same advantages with respect 

to frequency line selection and numerical stability. Advantages of the current algorithm 
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are amplified in extreme cases of data corruption, number of damage identification 

parameters, and low parameter sensitivity. 

As shown through examples on an analytical composite sandwich plate, the 

algorithm is effective when coupled with finite element models on the order of thousands 

of degrees-of-freedom. The results include accurate damage identification in cases of up 

to 99.8% decrease in degrees-of-freedom between the analytical model and available 

measurements, high levels of measurement noise, and up to 36 individual update 

parameters. Parameter estimation error increases as relative parameter sensitivity 

decreases, meaning that low-sensitivity parameters are less likely to be identified 

accurately. Through parametric studies on the same analytical test structure, the 

following conclusions can additionally be drawn: 

 Increasing the number of frequency lines decreases damage identification 

error and increases computation time (number of iterations and time per 

iteration). 

 Increasing the frequency selection coherence tolerance decreases parameter 

error and computation time. 

 Damage identification error increases smoothly with increasing noise. 

 The dynamic behavior of the structure needs to be accurately captured both 

spatially and across frequency for accurate damage identification. 

 Mean relative parameter error and convergence time increase with number of 

update parameters. 
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 Posterior parameter uncertainty increases with noise. 

Further studies on the composite sandwich plate model show that the extended 

Rayleigh damping method formulated in the full analytical degree-of-freedom space can 

provide an accurate method for directly modeling unknown damping in reduced 

coordinates in a realistically-sized structure when modal parameters are available. 

Based on experimental studies on a composite laminate plate, the primary 

algorithm can successfully perform damage identification on a real structure with realistic 

levels of measurement noise and modeling error. Initial model correlation to a baseline 

dataset can successfully be used to reduce initial modeling error sufficiently below the 

level of changes caused by the damage, even when the initial model has underlying 

deficiencies. Deterministic pseudo Newton-Raphson optimization techniques with cost 

functions based on change in natural frequencies, frequency response functions, or 

residual force vectors can be used for initial model correlation. This family of methods is 

computationally efficient but will become unstable for more than a small number of 

update parameters and/or when there is a wide variation in parameter sensitivity. It is 

therefore recommended that these methods only be used as an optional preliminary step 

on realistically sized physical structures. The primary damage identification algorithm 

can also be successfully used for baseline model correlation when global model 

parameters are selected as update variables. Assuming a low-level of parameter 

variability in this context will have the effect of constraining the parameters to a 

restricted range, as desired. Inclusion of the primary algorithm during the correlation 
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process also helps produce an updated baseline model which is accurate in the domain to 

be queried for damage identification. 

The algorithm can accurately determine which elements correspond most closely 

to the damaged region by updating elemental damage factors—with the effect of reducing 

all element stiffnesses—to close to zero for elements fully contained in the damage 

region and to a value between one and zero for elements partially contained in the 

damage region and/or partially damaged. Damage factors on elements which are fully out 

of the damage region are successfully maintained close to unity. The algorithm may 

produce false positives; however, additional damage identification runs using a subset of 

the original update damage parameters can identify the error. In this case, the algorithm 

benefits from operator judgment to assign and interpret additional diagnostic damage 

identification runs. 

Relative parameter sensitivity with respect to global response and noise will 

dictate the detail to which damage can be identified. For instance, damage which is small 

compared to the size of the structure and/or located in an area of low strain-energy may 

only be quantifiable in terms of major element properties, or not at all.  

Using more frequency lines during damage identification increases both accuracy 

and computational expense, with the increase in accuracy offering diminishing returns 

after a certain point. Accuracy can also be improved by selecting specific analysis 

frequency lines from the pool surrounding modes with a high level of fidelity between the 

correlated analytical model and reference data. Three methods for determining this 
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correlation were trialed with the result that the level of mode shape correlation between 

the healthy reference data set and correlated analytical model appears to be the best 

choice. 

The values of initial damage factor variability specified at the beginning of a 

damage identification run influence both the final updated variability values and, through 

regularization, the ability of the damage factors to update to values much different from 

their original values. Updated parameter variability will decrease with decreasing initial 

variance value and increasing parameter sensitivity. The amount of relative decrease in 

parameter variability depends on how high the initial parameter variance is compared to 

the ratio of noise variance to parameter sensitivity squared. The noise variance and 

parameter sensitivity are fixed for a given update problem; therefore, insight into 

reasonable values of initial damage factor variability could potentially be gained by 

inspecting its relative magnitude compared to the ratio of parameter sensitivity and noise 

variance. The impact of regularization also needs to be taken into account when 

specifying initial variability since too low of an initial value may over-constrain the 

optimization. Although insight into reasonable values may be gained through the methods 

and observations just mentioned, no rigorous quantitative means of establishing the best 

prior variability numbers for a particular problem is currently known. 

The following conclusions can be drawn regarding development efforts towards a 

scaled composite wing test-bed for structural health monitoring technology. A scaled 

architecture representing the primary wing structure of a composite unmanned aerial 
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vehicle was successfully designed, modeled using finite elements, manufactured, and 

vibration tested. The test-bed captures the fundamental modal behavior of the target 

vehicle structure. Damage cases representing progressive spar-skin and skin-core disbond 

damage were modeled to a first-order by the removal of rigid links with an acceptable 

effect on fundamental modes compared to expectations. Top-to-bottom manufacturing 

practices for layup, cure, and assembly of the wing structure were detailed, as were the 

methods and results of component and system level vibration testing using a scanning 

laser Doppler vibrometer. Vibration testing results show reasonable fidelity to the finite 

element model, with the primary variations explainable through differences in boundary 

conditions and bondline stiffness. 

 Specific Contributions 8.3

The following is a list of contributions developed through the current dissertation 

which, to the best of the author’s knowledge, are partially or wholly novel. 

 Adaptation of the frequency domain equations for statistical least-squares 

iterative parameter estimation to structural health monitoring on the basis of 

frequency response function based residual force vectors (or equivalently, 

frequency response function difference). Ref: Section 3.6. 

 Novel derivation of the exact frequency response function sensitivity equation 

(Note: the resulting equation has been presented previously but, to the best of 
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the author’s knowledge, the derivation presented herein is novel). Ref: Section 

3.6.3. 

 Algorithmic approaches for selecting frequency lines by consecutive 

discrimination based on natural frequency (if modal parameters are available), 

average frequency response function magnitude (in displacement, velocity, or 

acceleration domains), and coherence. Ref: Section 4.1. 

 A method for estimating reference frequency response function covariance 

matrices from measured frequency response coherence functions. Ref: Section 

4.2. 

 Proof of equivalence between displacement, velocity, and acceleration 

domains in frequency response function reference data for use of the current 

damage identification algorithm. Ref: Section 4.3. 

 Development of approaches to dealing with numerical issues stemming from 

low parameter sensitivity, including the use of scaled damage factors, large 

sensitivity perturbations for linear parameters, and grouping of damaged 

elements. Ref: Section 5.2. 

 Development of methods for accurately modeling proportional damping in 

reduced coordinates, including adaptation of the extended Rayleigh method 

for approximating generalized damping for frequency response function based 

damage identification when modal information is available. Ref: Section 5.4.2. 
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 Development of three methods for calculating real-valued modal data for use 

with modeling proportional damping in reduced coordinates when modal 

information is available (one of which is heavily based on the work of the 

cited author). Ref: Section 5.4.3. 

 Detail of four methods for analytical model correlation, including three 

methods based on the Newton-Raphson method and minimization of error in 

natural frequencies, frequency response functions, or frequency response 

residual force vectors, and the final method using a modified form of the 

primary damage identification algorithm. (Note: the classical Newton-

Raphson optimization algorithms are not claimed to be novel, although 

foundational references for the specific presentation and application herein 

were not located.) Ref: Section 6.1 

 Integration of model correlation and damage identification, including iterative 

brute-force update of a potentially deficient model for damage identification, 

frequency line selection based on correlated modes, and recommendations for 

parameter prior variability assignment. Ref: Section 6.3 

 Dissection of prior and posterior parameter variability in the context of model 

correlation and damage identification, in term of both prior variability 

assignment and posterior variability interpretation. Ref: Section 6.4.4.4 
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 Detailed description and values of experimental modal data from a composite 

wing structure representing the primary structure of a modern unmanned 

aerial vehicle wing at 1/3 scale. Ref: Section 7.5. 

 Future Work 8.4

The following topics are recommended for future development of the current 

algorithm towards full-vehicle structural health monitoring and prognosis: 

 Investigate the algorithm’s performance and behavior with noise on the input 

and colored, frequency-varying noise. 

 Investigate the algorithm’s performance and behavior to additional cases of 

parametric nonlinearity. 

 Investigate the algorithm’s potential application to cases of nonlinearity with 

respect to loading. In this case, the structural testing and model formulation 

and analysis would need to, at a minimum, be capable of producing matching 

frequency response functions in the baseline and damaged configurations. 

 Investigate the use of multiple-input multiple-output methods for data 

acquisition with respect to increasing algorithm performance. 

 Incorporate additional algorithms for automatically down selecting update 

parameters to reduce non-uniqueness in the final solution. 
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 Recode algorithm implementation for higher numerical efficiency, more 

general application on complex structures with varying element and material 

types, and automation. 

 Incorporate exact finite element model parameter sensitivities where possible 

as opposed to relying on finite difference approximations. 

 Couple the algorithm with upstream systems for detailed damage location and 

downstream prognosis. 

 Further explore the meaning and behaviors of parameter uncertainty in terms 

of both defining prior uncertainty values and understanding the meaning of 

posterior uncertainty values and their application to downstream prognosis 

activities. 

 Apply the algorithm to the scaled-wing structural health monitoring test-bed 

presented in Chapter 7 of the dissertation. 

 Experimentally apply and validate the algorithm on increasingly large and 

realistic structures with controlled and then operationally-generated damage 

cases. 

 Closing Remarks 8.5

The completed dissertation has presented the development and validation of an 

integrated top-to-bottom algorithm architecture for damage identification of realistically 
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sized and damped structures, including initial model correlation, damage location (if 

required), identification of multiple concurrent damage cases of varying non-specific 

types (including, but not limited to, changes in stiffness, mass, and damping), and 

estimation of updated parameter uncertainty. The algorithm is appropriate for systems 

with unspecified and potentially severe levels of structural, proportional, and/or 

generalized damping and with significantly reduced degree-of-freedom reference sets. 

The algorithm is also robust to measurement noise, large variations in parameter 

sensitivity, and the various numerical complications associated with application to 

realistically sized structures.  

The current effort follows decades of research and development towards structural 

health monitoring technology by engineers, researchers, and students around the world, 

and the result is a system that—in the author’s opinion—has significant potential for 

application to real-world aerospace structures. The next steps in continuing work would 

be to experimentally apply and validate the algorithm on increasingly large and realistic 

structures with controlled and then operationally-generated damage cases. Application to 

the structural health monitoring scaled-wing test-bed presented in Chapter 7 would be a 

natural start. However, the algorithm is generalized enough in its construction that 

application could be made to a very many structures, both within and outside of the world 

of aerospace. As discussed in Chapter 1, the primary interest is to end up with fully 

integrated systems for regular and accurate structural health monitoring of operational 

structures, and then to extend the analysis to prognosis so that the damage propagation 
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and the useful life of the structure may be understood and tracked. The day will 

inevitably come when the majority of airplanes, spacecraft, unmanned aerial vehicles, 

automobiles, buildings, bridges, and the other aerospace and civil infrastructure that form 

the foundation of our civilization will know at any given second their state of health, the 

details of any anomalies, and life-expectancy. In the beginning, this will be a small 

evolution from the detail currently provided by regular inspection. In the long run, the 

structures we live with and depend on will operate with fully integrated sophisticated 

health systems that rival and even surpass the biological nervous systems that are their 

inspiration. 
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APPENDIX A. EXTENDED RAYLEIGH DAMPING DERIVATION 

It is assumed that DN  degree-of-freedom stiffness matrix K and mass matrix 

M  are known from the analytical model and that natural frequencies n , DN  degree-

of-freedom mode shapes n , and modal damping ratios n  have been measured for 

1...n c  modes, where c , c , and c  correspond to the highest mode in the set. 

Derivation of a viscous damping matrix C  by the extended Rayleigh damping method, 

following Clough and Penzien (2003), then proceeds as follows. 

The goal is to calculate C  which replicates measured model damping at 

specified modes and is orthogonal to the mode shapes. Orthogonality is guaranteed by 

forming the damping matrix as a summation of scaled mass and stiffness matrices, which 

are assumed to be orthogonal with the properties 

 

,   if 
0,       if 

T n
m n

M m n
M

m n , (A.1) 

 

,   if 
0,       if 

T n
m n

K m n
K

m n , (A.2) 

and 

 2 n
n

n

K
M

. (A.2) 

The damping matrix will thus obey the relationship  
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,   if 
0,       if 

T n
m n

C m n
C

m n . (A.3) 

where nC  is defined in terms of the modal damping ratio as  

 2n n n nC M  (A.4) 

for each mode n. Defining nC

 

as the diagonal matrix containing the components nC , 

the orthogonality relationship can alternatively be written in matrix form as  

 

2T
n n n nC M C

. (A.5) 

(Note: For the derivation it is assumed that the mode shape matrix is fully populated, with 

dimensions equal to system matrices, even though only select modes will end up being 

used to populate the damping matrix). Similarly, the diagonal model mass matrix nM  

can be written as  

 
T

nM M
, (A.6) 

If Eq. (A.6) is pre-multiplied by 1
nM  and the post-multiplied by 1   the 

relationship 

 
1 1 T

nM M
, (A.7) 
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is established. Similarly, pre-multiplying Eq. (A.6) by  T   (where superscript ... T  

denotes the inverse of the transpose of the matrix) and then post-multiplying by 1M  

produces  

 
1T

nM M . (A.8) 

Equation (A.5) is now inverted to produce  

 
1T

nC C
, (A.9) 

and combining with Eqs. (A.7) and (A.8) and recognizing symmetry of the mass matrix 

(i.e., TM M ) gives the relationship 

 
1 1 T

n n nC M M C M M
. (A.10) 

The central three matrices on the right hand side of this equation are all diagonal and thus 

can be combined into a single diagonal matrix nD  with non-zero components 

 

2 n n
n

n
D

M . (A.11) 

Equation (A.10) can therefore be rewritten  

 
T

nC M D M
. (A.12) 
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Inspecting the form of this equation, it can be seen that each mode effectively makes an 

independent contribution to the damping matrix equal to T
nn nM D M

 

and the 

damping matrix can therefore be written as a summation of these parts: 

 1

c T
nn n

n
C M D M .

 (A.13) 

This equation could be used to generate the damping matrix; however, if the 

number of modes used is less than the total number present in the system, i.e. if Dc N , 

then undamped modes above n c  will be amplified by the lack of analytical damping 

and may distort response in the range of interest.  This effect can be mitigated by adding 

in stiffness proportional damping at the highest mode of interest. The reasoning can be 

seen by imagining a single mode with viscous damping proportional to the stiffness 

matrix by a constant a1, 1C a K , which leads to the relationship  

 2
1 1 1

T
n n n nn nC a K a K a M . (A.14) 

Substituting in Eq. (A.4) then produces 

 1
2

n
n

a
. (A.15) 

and it can be seen that modal damping increases linearly with natural frequency.  

If the proportionality constant a1 is set to produce the desired damping ratio at the 

highest mode of interest, then 
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 1
2 c

c
a . (A.16) 

Each mode will now have a damping ration equal to the sum of stiffness-proportional 

damping, designated as n K
, and mass-proportional damping given in Eq. (A.13), 

designated as n M
. The stiffness contribution is equal to 

 1
2

c n
n cK

c

a
. (A.17) 

Hence, in order to achieve a total combined damping ratio of n , the mass-proportional 

damping ratio must be  

 n
n n cM

c
. (A.18) 

The final equation for the extended Rayleigh proportional damping matrix is thus 

 
1

1
1

2c
Tc n M

n n
nn

C a K M M
M

, (A.19) 

or, after substituting in Eqs. (A.16) and (A.18) and rearranging, 

 
1

1

2 2
c

Tc n n
n c n n

c c nn

C K M M
M

, (A.20) 

A.2 Appendix A References 

[A-1] Clough, R.W., Penzien, J., Dynamics of Structures, Second Edition, McGraw 
Hill, (1993) 
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APPENDIX B. BAYESIAN OPTIMAL ESTIMATE FOR LINEAR SYSTEMS 

Parameter estimation in a system which is nonlinear in its parameters can be 

accomplished by iteratively applying small linear updates—repeatedly linearizing the 

system and updating. One method for achieving a best linear unbiased estimate is 

minimization of the variance of the difference between measured and analytical response 

quantities and can be derived as follows (following Collins et al. (1974) and Martinez 

(1982) for a general response residual). To start, a general linear system, where the 

random measured response vector Y  is modeled as the system A  multiplied by 

random parameters in x  plus a vector of measurement noise v , is written 

 Y A x v   (B.1) 

The prior statistical information for the random variables can be defined as 

0 0ˆ ˆ0ˆ , x xx x SN  and ,v vvv SN , where , SN  

denotes generic quantity  as a Gaussian normal random quantity with mean 

 E  (B.2) 

and covariance  

 
T

S E E E , (B.3) 
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a caret denotes an estimated point value of a random quantity, and ...E  refers to the 

expected value (with ... , ...E E  occasionally used for brevity, depending on the 

dimensionality.  

The random variance covariance matrices can be written explicitly as 

 
0 0ˆ ˆ 0 0ˆ ˆ T

x xS E x x x x , (B.4) 

 
T

vv v vS E v v . (B.5) 

At a given time the model will be in a state represented by the prior mean set 

0x̂ , with corresponding response  

 0 0Y A x  (B.6) 

Given a new measured response YY , a new set of parameters are desired such at the 

model response matches the measured response as closely as possible, given the noise; 

i.e., such it satisfies the system  

 Y A x vY A xA x . (B.7) 

Subtracting the initial estimate response equation from the measured response equation 

leads to  

 0 0ˆY Y A x v A x0Y Y0Y0 , (B.8) 
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and can be further simplified to  

  0 0Y A x v  (B.9) 

where  

 0 0Y Y Y0Y0Y , (B.10) 

 0 0ˆx x x  (B.11) 

are the prior measurement residual and prior estimation error, respectively.  

The prior parameter expected value is still the prior parameter estimate vector, 

and thus the prior estimation error mean is zero, as shown by the following succession: 

 0 0 0 0 0ˆ ˆ ˆ ˆ 0E x E x x E x E x x x . (B.12) 

Based on this result, the prior estimation error can be written simply 

 
0 0 0 0

T
x xS E x x , (B.13) 

and substituting in 0 0ˆx x x  shows it to equal the original prior parameter 

covariance: 

 
0 0 0 0ˆ ˆ0 0ˆ ˆ T

x x x xS E x x x x S . (B.14) 
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The prior measurement residual mean is first written in terms of the expected 

value, and then expanded to give 

 0 0 0E Y E A x v A E x E v . (B.15) 

Recognizing that 0 0E x  and vE v  from above, the expression reduces to 

 0 vE Y . (B.16) 

The prior measurement residual covariance is calculated by plugging the system 

difference equation along with 0 vE Y  into the formulation for covariance, to 

give  

 
0 0 0 0 0 0

0 0            .

T

Y Y

T

v v

S E Y E Y Y E Y

E A x v A x v
 (B.17) 

Expanding the quadratic and bringing the expected value onto each term produces 

 
0 0 0 0 0

0

...

              ... .

TT T
Y Y v

TT T
v v v

S E A x x A E A x v

E v x A E v v
 (B.18) 

By expanding and recognizing the parameter covariance the first term becomes 

 
0 0ˆ ˆ0 0 0 0

T T T T T
x xE A x x A A E x x A A S A . (B.19) 



www.manaraa.com

476 

 

The second and third terms equal zero because 0x  and v are statistically 

independent, and thus 

 0 0 0
T T

v vE A x v A E x v , (B.20) 

 0 0 0T T T T
v vE v x A E v x A . (B.21) 

Finally, the last term is the previously defined noise covariance. The full expression is 

therefore 

 
0 0 0 0ˆ ˆ

T
Y Y x x vvS A S A S . (B.22) 

The covariance between response and parameters can similarly be calculated by first 

writing 

 
0 0 0 0

0 0            ,

T

Y x v

T

v

S E Y x

E A x v x
 (B.23) 

then expanding to 

 
0 0 0 0 0

TT
Y x vS A E x x E v x . (B.24) 

By recognizing the parameter covariance and that 0 0
T

vE v x  because 

of statistical independence, the final expression can be written as 

 
0 0 0 0ˆ ˆY x x xS A S . (B.25) 
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Similarly, the transposed case can be written 

 
0 0 0 0ˆ ˆ

T
x Y x xS S A . (B.26) 

Because 
0 0ˆ ˆx xS  is symmetric, it can additionally be observed that  

 
0 0 0 0

T

x Y Y xS S . (B.27) 

It is desired to find x̂ , the optimal estimate of x , based on measured YY and 

the prior estimate 0x̂ . As demonstrated in Martinez (1982), under a few very general 

assumptions several common Bayesian estimators—including maximum a posteriori, 

maximum likelihood, and minimum mean square error (i.e., unbiased minimum 

variance)—are equivalent.  In particular, if the conditional distribution of x  given YY , 

( | )f x Y ) , is symmetric about the mean and convex for argument values less than or 

equal to the mean, then the optimal estimate is also the conditional mean; i.e., 

 
1ˆ | xY YYx E x Y E x S S Y E YYYY

1
E Y

1
YS

1
Y E xE x SS SxYYYSSS Y YYYYSSSSYYYYYY . (B.28) 

For symmetric unimodal density functions (e.g., Gaussian) the maximum a posteriori 

estimation will also produce the optimal estimate. Furthermore, the minimum mean 

square error estimate, which is also the unbiased minimum variance estimate (where an 

unbiased estimator is one for which the expected value of the estimator and the true 

variable are the same; i.e., ˆE x E x ), is equivalent to the conditional mean for 

continuous density functions. The minimum mean square error estimate is equivalent to 
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an extended weighted least-squares minimization, where the inverse covariance matrices 

are used to weight the system residual error and parameter regularization terms, and it 

can be shown that the appropriately formulated least-squares minimization also produces 

the optimal estimate. 

The optimal estimate x̂  can be found, as stated above, via the unbiased 

minimum variance estimator. In other words, it is desired to find G in the equation 

 0x̂ G Y  (B.29) 

where G  minimizes the variance of the difference between the true parameter 

difference 0 0ˆx x x  and estimated parameter difference 0ˆ ˆ ˆx x x . Note 

that the difference forms 0x  and x̂  are used instead of the pure parameters x  

and x̂  because the update requires differences to drive it, as evidenced by the form of 

Eq. (B.1). Because the estimator is unbiased, by definition, the expected values of x  

and x̂  will be equal; therefore, the minimization problem can be presented as 

 0 0ˆ ˆmin ,  where 
T

G

Q Q E x x x x . (B.30) 

Substituting the system equations into Q  and expanding gives 

 0 0 0 0
T

Q E x G Y x G Y , (B.31) 

 
0 0 0 0

0 0 0 0

...

                  ... .

T T T

T T T

Q G Y Y G G Y x

x Y G x x
 (B.32) 
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The expected value can then be expanded, and covariance matrices recognized, to 

produce 

 
0 0 0 0 0 0 0 0

T T
Y Y Y x x Y x xQ G S G G S S G S , (B.33) 

The minimization problem is solved by setting the first variation equal to zero, 

producing 

 0 T

TG

Q Q
Q G G

G G
, (B.34) 

and, by taking the derivatives and substituting in, 

 
0 0 0 0 0 0 0 0

0 T T
Y x Y Y x Y Y YG S S G S G S G . (B.35) 

Invoking the principal of variations gives the equivalent expressions 

 0 0 0 0

0 0 0 0

0 ,

0 ,

T
Y x Y Y

x Y Y Y

S S G

S G S
 (B.36) 

and rearranging finally produces the estimator solution, 

 
0 0 0 0

1

x Y Y YG S S , (B.37) 

or equivalently, 

 
0 0 0 0

1T

Y x Y YG S S , (B.38) 
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with a transpose of 

 
0 0 0 0

1T
Y Y Y xG S S . (B.39) 

The update equation can now be written in terms of covariance quantities by 

combining the estimator solution with Eq. (B.29) to give  

 
0 0 0 0

1

0ˆ
T

Y x Y Yx S S Y ; (9.40) 

expanding the variables and rearranging then leads to 

 
0 0 0 0

1

0 0ˆ ˆ
T

Y x Y Yx x S S Y Y0Y Y0Y . (B.41) 

Notice that if 0ˆ ˆE x x  and 0E Y Y0Y Y0 , consistent with prior assumptions, then this 

result equals the conditional mean as described above in Eq. (B.28). In the current 

general formulation with non-zero mean noise, this equivalence would not be true 

because then 0 vE Y Y0Y Y0Y0 ; however, non-zero noise introduces bias in which case 

the minimum variance estimator and conditional mean are not expected to be equivalent. 

Substituting in previously derived expressions for the covariance quantities leads 

to the final expression for the optimal estimate: 

 
0 0 0 0

1

ˆ ˆ ˆ ˆ0 0ˆ ˆ T T
x x x x vvx x S A A S A S Y Y0Y Y0Y . (B.42) 

The posterior parameter covariance is given by the expression 
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  * ˆ ˆ T

xxS E x x x x , (B.43) 

and can be found following reference Collins et al. [B-1]. Its equality to the parameter 

difference covariance, previously represented by Q , is first shown by subtracting the 

prior estimate from each vector, as 

 *
0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ

T

xxS E x x x x x x x x , (B.44) 

and then recognizing the parameter difference expressions, to give 

 *
0 0ˆ ˆ T

xxS E x x x x . (B.45) 

The expanded version of Q  given in Eq. (B.33) can now be combined with the solution 

of G , giving 

 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1*

1 1

...

        ... ,

T

xx Y x Y Y Y Y Y Y Y x

T

Y x Y Y Y x x Y Y Y Y x x x

S S S S S S

S S S S S S S
(B.46) 

and canceling terms then leads to 

 
0 0 0 0 0 0 0 0

1*
xx x x x Y Y Y Y xS S S S S . (B.47) 

Substituting in the previously derived expressions for various covariance matrices leads 

to the following final expression: 

 
0 0 0 0 0 0 0 0

1
*

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
T T

xx x x x x x x vv x xS S S A A S A S A S . (B.48) 
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An alternative representation of this expression, consistent with Gura [B-2] and 

Martinez [B-3], can be found, for matrices B, U, C, and V, by invoking the matrix 

inversion lemma,  

 
11 1 1 1 1 1B UCV B B U C VB U VB  (B.49) 

producing  

 
0 0

11 1*
ˆ ˆ

T
xx x x vvS S A S A . (B.50) 

Likewise, the estimate equation can be written in an alternate form which is more easily 

compared to similar equations from the literature, as 

 
0 0

11 1 1
ˆ ˆ0 0ˆ ˆ ˆT T
x x vv vvx x S A S A A S Y A x0ˆY A x̂Y ; (B.51) 

or, in terms of the posterior parameter covariance, as 

 
1 1

0 0ˆ ˆ ˆT
xx vvx x S A S Y A x0ˆY A x0ˆY . (B.52) 

To prove equivalence to the original estimate expression in Eq. (B.42), first 

expand Eq. (B.52) using the matrix inversion lemma on the inverse quantity to form 

 
0 0 0 0 0 0 0 0

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0

1
0

ˆ ˆ ...

ˆ       ... .

T T
x x x x x x vv x x

T
vv

x x S S A A S A S A S

A S Y A x0ˆ0Y A x̂
 (B.53) 

Subtracting this quantity from Eq. (B.42) and rearranging leaves the expression 
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0 0 0 0 0 0 0 0

0 0 0 0

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

ˆ ˆ ˆ ˆ

...

              ... .

T T T
x x x x x x vv x x vv

T T
x x x x vv

S S A A S A S A S A S

S A A S A S

 (B.54) 

Expanding and canceling 
0 0ˆ ˆ

T
x xS A  from the left leaves 

 
0 0 0 0

0 0

11 1
ˆ ˆ ˆ ˆ

1

ˆ ˆ

...

              ... .

T T
vv x x vv x x vv

T
x x vv

S A S A S A S A S

A S A S
 (B.55) 

Multiplying from the left by 
0 0ˆ ˆ

T
x x vvA S A S  and canceling terms produces  

 I I  (B.56) 

and thus proves the equivalence. 

B.2 Appendix B References 

[B-1] Collins, J.D., Hart, G.C., Hasselman, T.K., and Kennedy, B., “Statistical 
Identification of Structures,” AIAA Journal, 12(2), pp. 185–190, (1974) 

[B-2] Gura, I.A., "Extension of Linear Estimation Techniques to Nonlinear 
Problems," Journal of the Astronautical Sciences, 15(4) , pp.194-205, (1968) 

[B-3] Martinez, D.R., “Estimation Theory Applied to Improving Structural Dynamics 
Models,” Sandia National Laboratory Report SAND82-0572, (1982) 
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APPENDIX C. COMPLEX-TO-REAL MODE TRANSFORMATION STUDY 

A comparison study is presented to evaluate the methods detailed in Section 5.4.3 

for acquiring real mode shapes and natural frequencies from measured complex data. 

These methods are required for implementing the modal damping methods discussed in 

Section 5.4. The Rayleigh modal damping method implemented in full coordinates (Eq. 

5-5 from Section 5.4.2.1) is used for all cases so differences between results are only 

related to which complex-to-real method was used. In each case, the methods are 

evaluated against the known exact analytical damping solution calculated using stiffness 

proportional viscous damping and representing the error generated by machine precision. 

An additional comparison is made to a result gained by using straight complex modal 

data without performing the complex-to-real conversion. The complex-to-real methods 

under consideration (with references to their previous descriptions in parentheses where 

applicable) are   

(A) Rotated-real method (Section 5.4.3.1) 

(B) Rotated absolute value method (Section 5.4.3.2) 

(C) Fuellekrug method (Section 5.4.3.3) 

(D) Complex modal data with no complex-to-real transformation 

(E) Exact analytical solution, using known proportional damping 
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Figures C-1 through C-4 present results in terms of the driving point frequency 

response functions, frequency response function difference, residual force vector, and 

non-zero matrix element averaged magnitude over frequency, respectively. It can be seen 

by looking at these results that the Fuellekrug and rotated absolute value methods 

perform very similarly, with a very slight increase in accuracy being gained from the 

Fuellekrug method, and both methods giving acceptably low error. The rotated-real 

method, however, gives a substantially lower error and is thus clearly the better choice 

for these cases. On the other hand, using the complex data directly gives very inaccurate 

results, both in terms of the residual force vector and frequency response functions. All 

methods produce similar variations in damping matrix non-zero element magnitude 

across frequency, with the spikes corresponding to the poles of 1( , )k ssZ r  as observed 

and discussed in Section 5.5.2. 
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Figure C-1: Acceleration domain driving point frequency response functions of five complex-to-real 
modal transformation cases compared to exact analytical case (all using extended Rayleigh modal 
damping in f-DOF) and simulated reference frequency response function. 

 

 

Figure C-2: Frequency response function difference, mean absolute value over degree-of-freedom, 
for five complex-to-real modal transformation cases compared to exact analytical case. 
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Figure C-3: Frequency response residual force vector, mean absolute value over degree-of-freedom, 
for five complex-to-real modal transformation cases compared to exact analytical case. 

 

 

Figure C-4: Mean absolute value of non-zero reduced degree-of-freedom damping matrix elements 
for five complex-to-real modal transformation cases compared to exact analytical case (all using 
extended Rayleigh modal damping in f-DOF). 
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APPENDIX D. BULK DATA FILE FOR LAMINATE PLATE 

INIT MASTER(S) 
NASTRAN SYSTEM(442)=-1, SYSTEM(319)=1 
SOL SEMODES 
TIME 10000 
CEND 
  TITLE = NXNAS_HVT36_LFF_30MODES 
  ECHO = NONE 
  SET 1 = 1,5,9,13,17,21,85,89,93,97,101,105,169,173,177,181,185,189,253,257, 
    261,265,269,273,337,341,345,349,353,357,421,425,429,433,437,441 
  DISPLACEMENT(PRINT) = 1 
  METHOD = 1 
BEGIN BULK 
PARAM,POST,-1 
PARAM,OGEOM,NO 
PARAM,AUTOSPC,YES 
PARAM,MAXRATIO,1.+8 
PARAM,GRDPNT,0 
EIGRL          1                      36       0                    MASS 
CORD2C*                1               0              0.              0. 
*                     0.              0.              0.              1.* 
*                     1.              0.              1. 
CORD2S*                2               0              0.              0. 
*                     0.              0.              0.              1.*        
*                     1.              0.              1. 
$ Femap with NX NASTRAN Property 1 : CST_Xply12_GrEp 
PCOMP*                 1                              0.                 
*                                                                       *        
*                      1       0.0001375              0.             YES 
*                      1       0.0001375             90.             YES*        
*                      1       0.0001375              0.             YES 
*                      1       0.0001375             90.             YES*        
*                      1       0.0001375              0.             YES 
*                      1       0.0001375             90.             YES*        
*                      1       0.0001375             90.             YES 
*                      1       0.0001375              0.             YES*        
*                      1       0.0001375             90.             YES 
*                      1       0.0001375              0.             YES*        
*                      1       0.0001375             90.             YES 
*                      1       0.0001375              0.             YES 
$ Femap with NX NASTRAN Material 1 : Composite Material 
MAT8*                  1   129100000000.     7715200000.          0.3232 
*            6407200000.     2630400000.     2630400000.        1560.505*        
*                     0.              0.              0.                 
*                                                                       *        
*                                                        
GRID           1       0      0.      0.      0.       0 
GRID           2       0      0. .015025      0.       0 
GRID           3       0      0.  .03005      0.       0 
GRID           4       0      0. .045075      0.       0 
GRID           5       0      0.   .0601      0.       0 
GRID           6       0      0. .075125      0.       0 
GRID           7       0      0.  .09015      0.       0 
GRID           8       0      0.  .10517      0.       0 
GRID           9       0      0.   .1202      0.       0 
GRID          10       0      0.  .13522      0.       0 
GRID          11       0      0.  .15025      0.       0 
GRID          12       0      0.  .16528      0.       0 
GRID          13       0      0.   .1803      0.       0 
GRID          14       0      0.  .19533      0.       0 
GRID          15       0      0.  .21035      0.       0 
GRID          16       0      0.  .22537      0.       0 
GRID          17       0      0.   .2404      0.       0 
GRID          18       0      0.  .25542      0.       0 
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GRID          19       0      0.  .27045      0.       0 
GRID          20       0      0.  .28547      0.       0 
GRID          21       0      0.   .3005      0.       0 
GRID          22       0  .01495      0.      0.       0 
GRID          23       0  .01495 .015023      0.       0 
GRID          24       0  .01495 .030045      0.       0 
GRID          25       0  .01495 .045068      0.       0 
GRID          26       0  .01495 .060091      0.       0 
GRID          27       0  .01495 .075114      0.       0 
GRID          28       0  .01495 .090136      0.       0 
GRID          29       0  .01495  .10516      0.       0 
GRID          30       0  .01495  .12018      0.       0 
GRID          31       0  .01495   .1352      0.       0 
GRID          32       0  .01495  .15023      0.       0 
GRID          33       0  .01495  .16525      0.       0 
GRID          34       0  .01495  .18027      0.       0 
GRID          35       0  .01495   .1953      0.       0 
GRID          36       0  .01495  .21032      0.       0 
GRID          37       0  .01495  .22534      0.       0 
GRID          38       0  .01495  .24036      0.       0 
GRID          39       0  .01495  .25539      0.       0 
GRID          40       0  .01495  .27041      0.       0 
GRID          41       0  .01495  .28543      0.       0 
GRID          42       0  .01495  .30045      0.       0 
GRID          43       0   .0299      0.      0.       0 
GRID          44       0   .0299 .015021      0.       0 
GRID          45       0   .0299 .030041      0.       0 
GRID          46       0   .0299 .045061      0.       0 
GRID          47       0   .0299 .060082      0.       0 
GRID          48       0   .0299 .075102      0.       0 
GRID          49       0   .0299 .090123      0.       0 
GRID          50       0   .0299  .10514      0.       0 
GRID          51       0   .0299  .12016      0.       0 
GRID          52       0   .0299  .13518      0.       0 
GRID          53       0   .0299   .1502      0.       0 
GRID          54       0   .0299  .16523      0.       0 
GRID          55       0   .0299  .18025      0.       0 
GRID          56       0   .0299  .19527      0.       0 
GRID          57       0   .0299  .21029      0.       0 
GRID          58       0   .0299  .22531      0.       0 
GRID          59       0   .0299  .24033      0.       0 
GRID          60       0   .0299  .25535      0.       0 
GRID          61       0   .0299  .27037      0.       0 
GRID          62       0   .0299  .28539      0.       0 
GRID          63       0   .0299  .30041      0.       0 
GRID          64       0  .04485      0.      0.       0 
GRID          65       0  .04485 .015018      0.       0 
GRID          66       0  .04485 .030036      0.       0 
GRID          67       0  .04485 .045055      0.       0 
GRID          68       0  .04485 .060073      0.       0 
GRID          69       0  .04485 .075091      0.       0 
GRID          70       0  .04485 .090109      0.       0 
GRID          71       0  .04485  .10513      0.       0 
GRID          72       0  .04485  .12015      0.       0 
GRID          73       0  .04485  .13516      0.       0 
GRID          74       0  .04485  .15018      0.       0 
GRID          75       0  .04485   .1652      0.       0 
GRID          76       0  .04485  .18022      0.       0 
GRID          77       0  .04485  .19524      0.       0 
GRID          78       0  .04485  .21026      0.       0 
GRID          79       0  .04485  .22527      0.       0 
GRID          80       0  .04485  .24029      0.       0 
GRID          81       0  .04485  .25531      0.       0 
GRID          82       0  .04485  .27033      0.       0 
GRID          83       0  .04485  .28535      0.       0 
GRID          84       0  .04485  .30036      0.       0 
GRID          85       0   .0598      0.      0.       0 
GRID          86       0   .0598 .015016      0.       0 
GRID          87       0   .0598 .030032      0.       0 
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GRID          88       0   .0598 .045048      0.       0 
GRID          89       0   .0598 .060064      0.       0 
GRID          90       0   .0598  .07508      0.       0 
GRID          91       0   .0598 .090096      0.       0 
GRID          92       0   .0598  .10511      0.       0 
GRID          93       0   .0598  .12013      0.       0 
GRID          94       0   .0598  .13514      0.       0 
GRID          95       0   .0598  .15016      0.       0 
GRID          96       0   .0598  .16518      0.       0 
GRID          97       0   .0598  .18019      0.       0 
GRID          98       0   .0598  .19521      0.       0 
GRID          99       0   .0598  .21022      0.       0 
GRID         100       0   .0598  .22524      0.       0 
GRID         101       0   .0598  .24026      0.       0 
GRID         102       0   .0598  .25527      0.       0 
GRID         103       0   .0598  .27029      0.       0 
GRID         104       0   .0598   .2853      0.       0 
GRID         105       0   .0598  .30032      0.       0 
GRID         106       0  .07475      0.      0.       0 
GRID         107       0  .07475 .015014      0.       0 
GRID         108       0  .07475 .030027      0.       0 
GRID         109       0  .07475 .045041      0.       0 
GRID         110       0  .07475 .060055      0.       0 
GRID         111       0  .07475 .075069      0.       0 
GRID         112       0  .07475 .090082      0.       0 
GRID         113       0  .07475   .1051      0.       0 
GRID         114       0  .07475  .12011      0.       0 
GRID         115       0  .07475  .13512      0.       0 
GRID         116       0  .07475  .15014      0.       0 
GRID         117       0  .07475  .16515      0.       0 
GRID         118       0  .07475  .18016      0.       0 
GRID         119       0  .07475  .19518      0.       0 
GRID         120       0  .07475  .21019      0.       0 
GRID         121       0  .07475  .22521      0.       0 
GRID         122       0  .07475  .24022      0.       0 
GRID         123       0  .07475  .25523      0.       0 
GRID         124       0  .07475  .27025      0.       0 
GRID         125       0  .07475  .28526      0.       0 
GRID         126       0  .07475  .30028      0.       0 
GRID         127       0   .0897      0.      0.       0 
GRID         128       0   .0897 .015012      0.       0 
GRID         129       0   .0897 .030023      0.       0 
GRID         130       0   .0897 .045035      0.       0 
GRID         131       0   .0897 .060046      0.       0 
GRID         132       0   .0897 .075057      0.       0 
GRID         133       0   .0897 .090069      0.       0 
GRID         134       0   .0897  .10508      0.       0 
GRID         135       0   .0897  .12009      0.       0 
GRID         136       0   .0897   .1351      0.       0 
GRID         137       0   .0897  .15012      0.       0 
GRID         138       0   .0897  .16513      0.       0 
GRID         139       0   .0897  .18014      0.       0 
GRID         140       0   .0897  .19515      0.       0 
GRID         141       0   .0897  .21016      0.       0 
GRID         142       0   .0897  .22517      0.       0 
GRID         143       0   .0897  .24018      0.       0 
GRID         144       0   .0897   .2552      0.       0 
GRID         145       0   .0897  .27021      0.       0 
GRID         146       0   .0897  .28522      0.       0 
GRID         147       0   .0897  .30023      0.       0 
GRID         148       0  .10465      0.      0.       0 
GRID         149       0  .10465 .015009      0.       0 
GRID         150       0  .10465 .030018      0.       0 
GRID         151       0  .10465 .045028      0.       0 
GRID         152       0  .10465 .060037      0.       0 
GRID         153       0  .10465 .075046      0.       0 
GRID         154       0  .10465 .090056      0.       0 
GRID         155       0  .10465  .10506      0.       0 
GRID         156       0  .10465  .12007      0.       0 
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GRID         157       0  .10465  .13508      0.       0 
GRID         158       0  .10465  .15009      0.       0 
GRID         159       0  .10465   .1651      0.       0 
GRID         160       0  .10465  .18011      0.       0 
GRID         161       0  .10465  .19512      0.       0 
GRID         162       0  .10465  .21013      0.       0 
GRID         163       0  .10465  .22514      0.       0 
GRID         164       0  .10465  .24015      0.       0 
GRID         165       0  .10465  .25516      0.       0 
GRID         166       0  .10465  .27017      0.       0 
GRID         167       0  .10465  .28518      0.       0 
GRID         168       0  .10465  .30018      0.       0 
GRID         169       0   .1196      0.      0.       0 
GRID         170       0   .1196 .015007      0.       0 
GRID         171       0   .1196 .030014      0.       0 
GRID         172       0   .1196 .045021      0.       0 
GRID         173       0   .1196 .060028      0.       0 
GRID         174       0   .1196 .075035      0.       0 
GRID         175       0   .1196 .090042      0.       0 
GRID         176       0   .1196  .10505      0.       0 
GRID         177       0   .1196  .12006      0.       0 
GRID         178       0   .1196  .13506      0.       0 
GRID         179       0   .1196  .15007      0.       0 
GRID         180       0   .1196  .16508      0.       0 
GRID         181       0   .1196  .18008      0.       0 
GRID         182       0   .1196  .19509      0.       0 
GRID         183       0   .1196   .2101      0.       0 
GRID         184       0   .1196  .22511      0.       0 
GRID         185       0   .1196  .24011      0.       0 
GRID         186       0   .1196  .25512      0.       0 
GRID         187       0   .1196  .27013      0.       0 
GRID         188       0   .1196  .28513      0.       0 
GRID         189       0   .1196  .30014      0.       0 
GRID         190       0  .13455      0.      0.       0 
GRID         191       0  .13455 .015005      0.       0 
GRID         192       0  .13455  .03001      0.       0 
GRID         193       0  .13455 .045014      0.       0 
GRID         194       0  .13455 .060019      0.       0 
GRID         195       0  .13455 .075024      0.       0 
GRID         196       0  .13455 .090028      0.       0 
GRID         197       0  .13455  .10503      0.       0 
GRID         198       0  .13455  .12004      0.       0 
GRID         199       0  .13455  .13504      0.       0 
GRID         200       0  .13455  .15005      0.       0 
GRID         201       0  .13455  .16505      0.       0 
GRID         202       0  .13455  .18006      0.       0 
GRID         203       0  .13455  .19506      0.       0 
GRID         204       0  .13455  .21007      0.       0 
GRID         205       0  .13455  .22507      0.       0 
GRID         206       0  .13455  .24008      0.       0 
GRID         207       0  .13455  .25508      0.       0 
GRID         208       0  .13455  .27009      0.       0 
GRID         209       0  .13455  .28509      0.       0 
GRID         210       0  .13455   .3001      0.       0 
GRID         211       0   .1495      0.      0.       0 
GRID         212       0   .1495 .015003      0.       0 
GRID         213       0   .1495 .030005      0.       0 
GRID         214       0   .1495 .045008      0.       0 
GRID         215       0   .1495  .06001      0.       0 
GRID         216       0   .1495 .075012      0.       0 
GRID         217       0   .1495 .090015      0.       0 
GRID         218       0   .1495  .10502      0.       0 
GRID         219       0   .1495  .12002      0.       0 
GRID         220       0   .1495  .13502      0.       0 
GRID         221       0   .1495  .15002      0.       0 
GRID         222       0   .1495  .16503      0.       0 
GRID         223       0   .1495  .18003      0.       0 
GRID         224       0   .1495  .19503      0.       0 
GRID         225       0   .1495  .21003      0.       0 
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GRID         226       0   .1495  .22504      0.       0 
GRID         227       0   .1495  .24004      0.       0 
GRID         228       0   .1495  .25504      0.       0 
GRID         229       0   .1495  .27004      0.       0 
GRID         230       0   .1495  .28505      0.       0 
GRID         231       0   .1495  .30005      0.       0 
GRID         232       0  .16445      0.      0.       0 
GRID         233       0  .16445    .015      0.       0 
GRID         234       0  .16445     .03      0.       0 
GRID         235       0  .16445 .045001      0.       0 
GRID         236       0  .16445 .060001      0.       0 
GRID         237       0  .16445 .075001      0.       0 
GRID         238       0  .16445 .090002      0.       0 
GRID         239       0  .16445    .105      0.       0 
GRID         240       0  .16445     .12      0.       0 
GRID         241       0  .16445    .135      0.       0 
GRID         242       0  .16445     .15      0.       0 
GRID         243       0  .16445    .165      0.       0 
GRID         244       0  .16445     .18      0.       0 
GRID         245       0  .16445    .195      0.       0 
GRID         246       0  .16445     .21      0.       0 
GRID         247       0  .16445    .225      0.       0 
GRID         248       0  .16445     .24      0.       0 
GRID         249       0  .16445    .255      0.       0 
GRID         250       0  .16445     .27      0.       0 
GRID         251       0  .16445    .285      0.       0 
GRID         252       0  .16445  .30001      0.       0 
GRID         253       0   .1794      0.      0.       0 
GRID         254       0   .1794 .014998      0.       0 
GRID         255       0   .1794 .029996      0.       0 
GRID         256       0   .1794 .044994      0.       0 
GRID         257       0   .1794 .059992      0.       0 
GRID         258       0   .1794  .07499      0.       0 
GRID         259       0   .1794 .089988      0.       0 
GRID         260       0   .1794  .10499      0.       0 
GRID         261       0   .1794  .11998      0.       0 
GRID         262       0   .1794  .13498      0.       0 
GRID         263       0   .1794  .14998      0.       0 
GRID         264       0   .1794  .16498      0.       0 
GRID         265       0   .1794  .17998      0.       0 
GRID         266       0   .1794  .19497      0.       0 
GRID         267       0   .1794  .20997      0.       0 
GRID         268       0   .1794  .22497      0.       0 
GRID         269       0   .1794  .23997      0.       0 
GRID         270       0   .1794  .25497      0.       0 
GRID         271       0   .1794  .26996      0.       0 
GRID         272       0   .1794  .28496      0.       0 
GRID         273       0   .1794  .29996      0.       0 
GRID         274       0  .19435      0.      0.       0 
GRID         275       0  .19435 .014996      0.       0 
GRID         276       0  .19435 .029991      0.       0 
GRID         277       0  .19435 .044987      0.       0 
GRID         278       0  .19435 .059983      0.       0 
GRID         279       0  .19435 .074979      0.       0 
GRID         280       0  .19435 .089975      0.       0 
GRID         281       0  .19435  .10497      0.       0 
GRID         282       0  .19435  .11997      0.       0 
GRID         283       0  .19435  .13496      0.       0 
GRID         284       0  .19435  .14996      0.       0 
GRID         285       0  .19435  .16495      0.       0 
GRID         286       0  .19435  .17995      0.       0 
GRID         287       0  .19435  .19494      0.       0 
GRID         288       0  .19435  .20994      0.       0 
GRID         289       0  .19435  .22494      0.       0 
GRID         290       0  .19435  .23993      0.       0 
GRID         291       0  .19435  .25493      0.       0 
GRID         292       0  .19435  .26992      0.       0 
GRID         293       0  .19435  .28492      0.       0 
GRID         294       0  .19435  .29991      0.       0 
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GRID         295       0   .2093      0.      0.       0 
GRID         296       0   .2093 .014994      0.       0 
GRID         297       0   .2093 .029987      0.       0 
GRID         298       0   .2093 .044981      0.       0 
GRID         299       0   .2093 .059974      0.       0 
GRID         300       0   .2093 .074967      0.       0 
GRID         301       0   .2093 .089961      0.       0 
GRID         302       0   .2093  .10495      0.       0 
GRID         303       0   .2093  .11995      0.       0 
GRID         304       0   .2093  .13494      0.       0 
GRID         305       0   .2093  .14993      0.       0 
GRID         306       0   .2093  .16493      0.       0 
GRID         307       0   .2093  .17992      0.       0 
GRID         308       0   .2093  .19492      0.       0 
GRID         309       0   .2093  .20991      0.       0 
GRID         310       0   .2093   .2249      0.       0 
GRID         311       0   .2093   .2399      0.       0 
GRID         312       0   .2093  .25489      0.       0 
GRID         313       0   .2093  .26988      0.       0 
GRID         314       0   .2093  .28488      0.       0 
GRID         315       0   .2093  .29987      0.       0 
GRID         316       0  .22425      0.      0.       0 
GRID         317       0  .22425 .014991      0.       0 
GRID         318       0  .22425 .029982      0.       0 
GRID         319       0  .22425 .044974      0.       0 
GRID         320       0  .22425 .059965      0.       0 
GRID         321       0  .22425 .074956      0.       0 
GRID         322       0  .22425 .089948      0.       0 
GRID         323       0  .22425  .10494      0.       0 
GRID         324       0  .22425  .11993      0.       0 
GRID         325       0  .22425  .13492      0.       0 
GRID         326       0  .22425  .14991      0.       0 
GRID         327       0  .22425   .1649      0.       0 
GRID         328       0  .22425  .17989      0.       0 
GRID         329       0  .22425  .19489      0.       0 
GRID         330       0  .22425  .20988      0.       0 
GRID         331       0  .22425  .22487      0.       0 
GRID         332       0  .22425  .23986      0.       0 
GRID         333       0  .22425  .25485      0.       0 
GRID         334       0  .22425  .26984      0.       0 
GRID         335       0  .22425  .28483      0.       0 
GRID         336       0  .22425  .29982      0.       0 
GRID         337       0   .2392      0.      0.       0 
GRID         338       0   .2392 .014989      0.       0 
GRID         339       0   .2392 .029978      0.       0 
GRID         340       0   .2392 .044967      0.       0 
GRID         341       0   .2392 .059956      0.       0 
GRID         342       0   .2392 .074945      0.       0 
GRID         343       0   .2392 .089934      0.       0 
GRID         344       0   .2392  .10492      0.       0 
GRID         345       0   .2392  .11991      0.       0 
GRID         346       0   .2392   .1349      0.       0 
GRID         347       0   .2392  .14989      0.       0 
GRID         348       0   .2392  .16488      0.       0 
GRID         349       0   .2392  .17987      0.       0 
GRID         350       0   .2392  .19486      0.       0 
GRID         351       0   .2392  .20985      0.       0 
GRID         352       0   .2392  .22484      0.       0 
GRID         353       0   .2392  .23982      0.       0 
GRID         354       0   .2392  .25481      0.       0 
GRID         355       0   .2392   .2698      0.       0 
GRID         356       0   .2392  .28479      0.       0 
GRID         357       0   .2392  .29978      0.       0 
GRID         358       0  .25415      0.      0.       0 
GRID         359       0  .25415 .014987      0.       0 
GRID         360       0  .25415 .029974      0.       0 
GRID         361       0  .25415  .04496      0.       0 
GRID         362       0  .25415 .059947      0.       0 
GRID         363       0  .25415 .074934      0.       0 
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GRID         364       0  .25415 .089921      0.       0 
GRID         365       0  .25415  .10491      0.       0 
GRID         366       0  .25415  .11989      0.       0 
GRID         367       0  .25415  .13488      0.       0 
GRID         368       0  .25415  .14987      0.       0 
GRID         369       0  .25415  .16485      0.       0 
GRID         370       0  .25415  .17984      0.       0 
GRID         371       0  .25415  .19483      0.       0 
GRID         372       0  .25415  .20981      0.       0 
GRID         373       0  .25415   .2248      0.       0 
GRID         374       0  .25415  .23979      0.       0 
GRID         375       0  .25415  .25477      0.       0 
GRID         376       0  .25415  .26976      0.       0 
GRID         377       0  .25415  .28475      0.       0 
GRID         378       0  .25415  .29974      0.       0 
GRID         379       0   .2691      0.      0.       0 
GRID         380       0   .2691 .014985      0.       0 
GRID         381       0   .2691 .029969      0.       0 
GRID         382       0   .2691 .044954      0.       0 
GRID         383       0   .2691 .059938      0.       0 
GRID         384       0   .2691 .074922      0.       0 
GRID         385       0   .2691 .089907      0.       0 
GRID         386       0   .2691  .10489      0.       0 
GRID         387       0   .2691  .11988      0.       0 
GRID         388       0   .2691  .13486      0.       0 
GRID         389       0   .2691  .14984      0.       0 
GRID         390       0   .2691  .16483      0.       0 
GRID         391       0   .2691  .17981      0.       0 
GRID         392       0   .2691   .1948      0.       0 
GRID         393       0   .2691  .20978      0.       0 
GRID         394       0   .2691  .22477      0.       0 
GRID         395       0   .2691  .23975      0.       0 
GRID         396       0   .2691  .25474      0.       0 
GRID         397       0   .2691  .26972      0.       0 
GRID         398       0   .2691  .28471      0.       0 
GRID         399       0   .2691  .29969      0.       0 
GRID         400       0  .28405      0.      0.       0 
GRID         401       0  .28405 .014982      0.       0 
GRID         402       0  .28405 .029964      0.       0 
GRID         403       0  .28405 .044947      0.       0 
GRID         404       0  .28405 .059929      0.       0 
GRID         405       0  .28405 .074911      0.       0 
GRID         406       0  .28405 .089894      0.       0 
GRID         407       0  .28405  .10488      0.       0 
GRID         408       0  .28405  .11986      0.       0 
GRID         409       0  .28405  .13484      0.       0 
GRID         410       0  .28405  .14982      0.       0 
GRID         411       0  .28405   .1648      0.       0 
GRID         412       0  .28405  .17979      0.       0 
GRID         413       0  .28405  .19477      0.       0 
GRID         414       0  .28405  .20975      0.       0 
GRID         415       0  .28405  .22473      0.       0 
GRID         416       0  .28405  .23972      0.       0 
GRID         417       0  .28405   .2547      0.       0 
GRID         418       0  .28405  .26968      0.       0 
GRID         419       0  .28405  .28466      0.       0 
GRID         420       0  .28405  .29964      0.       0 
GRID         421       0    .299      0.      0.       0 
GRID         422       0    .299  .01498      0.       0 
GRID         423       0    .299  .02996      0.       0 
GRID         424       0    .299  .04494      0.       0 
GRID         425       0    .299  .05992      0.       0 
GRID         426       0    .299   .0749      0.       0 
GRID         427       0    .299  .08988      0.       0 
GRID         428       0    .299  .10486      0.       0 
GRID         429       0    .299  .11984      0.       0 
GRID         430       0    .299  .13482      0.       0 
GRID         431       0    .299   .1498      0.       0 
GRID         432       0    .299  .16478      0.       0 
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GRID         433       0    .299  .17976      0.       0 
GRID         434       0    .299  .19474      0.       0 
GRID         435       0    .299  .20972      0.       0 
GRID         436       0    .299   .2247      0.       0 
GRID         437       0    .299  .23968      0.       0 
GRID         438       0    .299  .25466      0.       0 
GRID         439       0    .299  .26964      0.       0 
GRID         440       0    .299  .28462      0.       0 
GRID         441       0    .299   .2996      0.       0 
CQUAD4         1       1       2       1      22      23     90.         
CQUAD4         2       1       3       2      23      24     90.         
CQUAD4         3       1       4       3      24      25     90.         
CQUAD4         4       1       5       4      25      26     90.         
CQUAD4         5       1       6       5      26      27     90.         
CQUAD4         6       1       7       6      27      28     90.         
CQUAD4         7       1       8       7      28      29     90.         
CQUAD4         8       1       9       8      29      30     90.         
CQUAD4         9       1      10       9      30      31     90.         
CQUAD4        10       1      11      10      31      32     90.         
CQUAD4        11       1      12      11      32      33     90.         
CQUAD4        12       1      13      12      33      34     90.         
CQUAD4        13       1      14      13      34      35     90. 
CQUAD4        14       1      15      14      35      36     90.         
CQUAD4        15       1      16      15      36      37     90.         
CQUAD4        16       1      17      16      37      38     90.         
CQUAD4        17       1      18      17      38      39     90.         
CQUAD4        18       1      19      18      39      40     90.         
CQUAD4        19       1      20      19      40      41     90.         
CQUAD4        20       1      21      20      41      42     90.         
CQUAD4        21       1      23      22      43      44     90.         
CQUAD4        22       1      24      23      44      45     90.         
CQUAD4        23       1      25      24      45      46     90.         
CQUAD4        24       1      26      25      46      47     90.         
CQUAD4        25       1      27      26      47      48     90.         
CQUAD4        26       1      28      27      48      49     90.         
CQUAD4        27       1      29      28      49      50     90.         
CQUAD4        28       1      30      29      50      51     90.         
CQUAD4        29       1      31      30      51      52     90.         
CQUAD4        30       1      32      31      52      53     90.         
CQUAD4        31       1      33      32      53      54     90.         
CQUAD4        32       1      34      33      54      55     90.         
CQUAD4        33       1      35      34      55      56     90.         
CQUAD4        34       1      36      35      56      57     90.         
CQUAD4        35       1      37      36      57      58     90.         
CQUAD4        36       1      38      37      58      59     90.         
CQUAD4        37       1      39      38      59      60     90.         
CQUAD4        38       1      40      39      60      61     90.         
CQUAD4        39       1      41      40      61      62     90.         
CQUAD4        40       1      42      41      62      63     90.         
CQUAD4        41       1      44      43      64      65     90.         
CQUAD4        42       1      45      44      65      66     90.         
CQUAD4        43       1      46      45      66      67     90.         
CQUAD4        44       1      47      46      67      68     90.         
CQUAD4        45       1      48      47      68      69     90.         
CQUAD4        46       1      49      48      69      70     90.         
CQUAD4        47       1      50      49      70      71     90.         
CQUAD4        48       1      51      50      71      72     90.         
CQUAD4        49       1      52      51      72      73     90.         
CQUAD4        50       1      53      52      73      74     90.         
CQUAD4        51       1      54      53      74      75     90.         
CQUAD4        52       1      55      54      75      76     90.         
CQUAD4        53       1      56      55      76      77     90.         
CQUAD4        54       1      57      56      77      78     90.         
CQUAD4        55       1      58      57      78      79     90.         
CQUAD4        56       1      59      58      79      80     90.         
CQUAD4        57       1      60      59      80      81     90.         
CQUAD4        58       1      61      60      81      82     90.         
CQUAD4        59       1      62      61      82      83     90.         
CQUAD4        60       1      63      62      83      84     90.         
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CQUAD4        61       1      65      64      85      86     90.         
CQUAD4        62       1      66      65      86      87     90. 
CQUAD4        63       1      67      66      87      88     90.         
CQUAD4        64       1      68      67      88      89     90.         
CQUAD4        65       1      69      68      89      90     90.         
CQUAD4        66       1      70      69      90      91     90.         
CQUAD4        67       1      71      70      91      92     90.         
CQUAD4        68       1      72      71      92      93     90.         
CQUAD4        69       1      73      72      93      94     90.         
CQUAD4        70       1      74      73      94      95     90.         
CQUAD4        71       1      75      74      95      96     90.         
CQUAD4        72       1      76      75      96      97     90.         
CQUAD4        73       1      77      76      97      98     90.         
CQUAD4        74       1      78      77      98      99     90.         
CQUAD4        75       1      79      78      99     100     90.         
CQUAD4        76       1      80      79     100     101     90.         
CQUAD4        77       1      81      80     101     102     90.         
CQUAD4        78       1      82      81     102     103     90.         
CQUAD4        79       1      83      82     103     104     90.         
CQUAD4        80       1      84      83     104     105     90.         
CQUAD4        81       1      86      85     106     107     90.         
CQUAD4        82       1      87      86     107     108     90.         
CQUAD4        83       1      88      87     108     109     90.         
CQUAD4        84       1      89      88     109     110     90.         
CQUAD4        85       1      90      89     110     111     90.         
CQUAD4        86       1      91      90     111     112     90.         
CQUAD4        87       1      92      91     112     113     90.         
CQUAD4        88       1      93      92     113     114     90.         
CQUAD4        89       1      94      93     114     115     90.         
CQUAD4        90       1      95      94     115     116     90.         
CQUAD4        91       1      96      95     116     117     90.         
CQUAD4        92       1      97      96     117     118     90.         
CQUAD4        93       1      98      97     118     119     90.         
CQUAD4        94       1      99      98     119     120     90.         
CQUAD4        95       1     100      99     120     121     90.         
CQUAD4        96       1     101     100     121     122     90.         
CQUAD4        97       1     102     101     122     123     90.         
CQUAD4        98       1     103     102     123     124     90.         
CQUAD4        99       1     104     103     124     125     90.         
CQUAD4       100       1     105     104     125     126     90.         
CQUAD4       101       1     107     106     127     128     90.         
CQUAD4       102       1     108     107     128     129     90.         
CQUAD4       103       1     109     108     129     130     90.         
CQUAD4       104       1     110     109     130     131     90.         
CQUAD4       105       1     111     110     131     132     90.         
CQUAD4       106       1     112     111     132     133     90.         
CQUAD4       107       1     113     112     133     134     90.         
CQUAD4       108       1     114     113     134     135     90.         
CQUAD4       109       1     115     114     135     136     90.         
CQUAD4       110       1     116     115     136     137     90.         
CQUAD4       111       1     117     116     137     138     90. 
CQUAD4       112       1     118     117     138     139     90.         
CQUAD4       113       1     119     118     139     140     90.         
CQUAD4       114       1     120     119     140     141     90.         
CQUAD4       115       1     121     120     141     142     90.         
CQUAD4       116       1     122     121     142     143     90.         
CQUAD4       117       1     123     122     143     144     90.         
CQUAD4       118       1     124     123     144     145     90.         
CQUAD4       119       1     125     124     145     146     90.         
CQUAD4       120       1     126     125     146     147     90.         
CQUAD4       121       1     128     127     148     149     90.         
CQUAD4       122       1     129     128     149     150     90.         
CQUAD4       123       1     130     129     150     151     90.         
CQUAD4       124       1     131     130     151     152     90.         
CQUAD4       125       1     132     131     152     153     90.         
CQUAD4       126       1     133     132     153     154     90.         
CQUAD4       127       1     134     133     154     155     90.         
CQUAD4       128       1     135     134     155     156     90.         
CQUAD4       129       1     136     135     156     157     90.         
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CQUAD4       130       1     137     136     157     158     90.         
CQUAD4       131       1     138     137     158     159     90.         
CQUAD4       132       1     139     138     159     160     90.         
CQUAD4       133       1     140     139     160     161     90.         
CQUAD4       134       1     141     140     161     162     90.         
CQUAD4       135       1     142     141     162     163     90.         
CQUAD4       136       1     143     142     163     164     90.         
CQUAD4       137       1     144     143     164     165     90.         
CQUAD4       138       1     145     144     165     166     90.         
CQUAD4       139       1     146     145     166     167     90.         
CQUAD4       140       1     147     146     167     168     90.         
CQUAD4       141       1     149     148     169     170     90.         
CQUAD4       142       1     150     149     170     171     90.         
CQUAD4       143       1     151     150     171     172     90.         
CQUAD4       144       1     152     151     172     173     90.         
CQUAD4       145       1     153     152     173     174     90.         
CQUAD4       146       1     154     153     174     175     90.         
CQUAD4       147       1     155     154     175     176     90.         
CQUAD4       148       1     156     155     176     177     90.         
CQUAD4       149       1     157     156     177     178     90.         
CQUAD4       150       1     158     157     178     179     90.         
CQUAD4       151       1     159     158     179     180     90.         
CQUAD4       152       1     160     159     180     181     90.         
CQUAD4       153       1     161     160     181     182     90.         
CQUAD4       154       1     162     161     182     183     90.         
CQUAD4       155       1     163     162     183     184     90.         
CQUAD4       156       1     164     163     184     185     90.         
CQUAD4       157       1     165     164     185     186     90.         
CQUAD4       158       1     166     165     186     187     90.         
CQUAD4       159       1     167     166     187     188     90.         
CQUAD4       160       1     168     167     188     189     90. 
CQUAD4       161       1     170     169     190     191     90.         
CQUAD4       162       1     171     170     191     192     90.         
CQUAD4       163       1     172     171     192     193     90.         
CQUAD4       164       1     173     172     193     194     90.         
CQUAD4       165       1     174     173     194     195     90.         
CQUAD4       166       1     175     174     195     196     90.         
CQUAD4       167       1     176     175     196     197     90.         
CQUAD4       168       1     177     176     197     198     90.         
CQUAD4       169       1     178     177     198     199     90.         
CQUAD4       170       1     179     178     199     200     90.         
CQUAD4       171       1     180     179     200     201     90.         
CQUAD4       172       1     181     180     201     202     90.         
CQUAD4       173       1     182     181     202     203     90.         
CQUAD4       174       1     183     182     203     204     90.         
CQUAD4       175       1     184     183     204     205     90.         
CQUAD4       176       1     185     184     205     206     90.         
CQUAD4       177       1     186     185     206     207     90.         
CQUAD4       178       1     187     186     207     208     90.         
CQUAD4       179       1     188     187     208     209     90.         
CQUAD4       180       1     189     188     209     210     90.         
CQUAD4       181       1     191     190     211     212     90.         
CQUAD4       182       1     192     191     212     213     90.         
CQUAD4       183       1     193     192     213     214     90.         
CQUAD4       184       1     194     193     214     215     90.         
CQUAD4       185       1     195     194     215     216     90.         
CQUAD4       186       1     196     195     216     217     90.         
CQUAD4       187       1     197     196     217     218     90.         
CQUAD4       188       1     198     197     218     219     90.         
CQUAD4       189       1     199     198     219     220     90.         
CQUAD4       190       1     200     199     220     221     90.         
CQUAD4       191       1     201     200     221     222     90.         
CQUAD4       192       1     202     201     222     223     90.         
CQUAD4       193       1     203     202     223     224     90.         
CQUAD4       194       1     204     203     224     225     90.         
CQUAD4       195       1     205     204     225     226     90.         
CQUAD4       196       1     206     205     226     227     90.         
CQUAD4       197       1     207     206     227     228     90.         
CQUAD4       198       1     208     207     228     229     90.         
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CQUAD4       199       1     209     208     229     230     90.         
CQUAD4       200       1     210     209     230     231     90.         
CQUAD4       201       1     212     211     232     233     90.         
CQUAD4       202       1     213     212     233     234     90.         
CQUAD4       203       1     214     213     234     235     90.         
CQUAD4       204       1     215     214     235     236     90.         
CQUAD4       205       1     216     215     236     237     90.         
CQUAD4       206       1     217     216     237     238     90.         
CQUAD4       207       1     218     217     238     239     90.         
CQUAD4       208       1     219     218     239     240     90.         
CQUAD4       209       1     220     219     240     241     90. 
CQUAD4       210       1     221     220     241     242     90.         
CQUAD4       211       1     222     221     242     243     90.         
CQUAD4       212       1     223     222     243     244     90.         
CQUAD4       213       1     224     223     244     245     90.         
CQUAD4       214       1     225     224     245     246     90.         
CQUAD4       215       1     226     225     246     247     90.         
CQUAD4       216       1     227     226     247     248     90.         
CQUAD4       217       1     228     227     248     249     90.         
CQUAD4       218       1     229     228     249     250     90.         
CQUAD4       219       1     230     229     250     251     90.         
CQUAD4       220       1     231     230     251     252     90.         
CQUAD4       221       1     233     232     253     254     90.         
CQUAD4       222       1     234     233     254     255     90.         
CQUAD4       223       1     235     234     255     256     90.         
CQUAD4       224       1     236     235     256     257     90.         
CQUAD4       225       1     237     236     257     258     90.         
CQUAD4       226       1     238     237     258     259     90.         
CQUAD4       227       1     239     238     259     260     90.         
CQUAD4       228       1     240     239     260     261     90.         
CQUAD4       229       1     241     240     261     262     90.         
CQUAD4       230       1     242     241     262     263     90.         
CQUAD4       231       1     243     242     263     264     90.         
CQUAD4       232       1     244     243     264     265     90.         
CQUAD4       233       1     245     244     265     266     90.         
CQUAD4       234       1     246     245     266     267     90.         
CQUAD4       235       1     247     246     267     268     90.         
CQUAD4       236       1     248     247     268     269     90.         
CQUAD4       237       1     249     248     269     270     90.         
CQUAD4       238       1     250     249     270     271     90.         
CQUAD4       239       1     251     250     271     272     90.         
CQUAD4       240       1     252     251     272     273     90.         
CQUAD4       241       1     254     253     274     275     90.         
CQUAD4       242       1     255     254     275     276     90.         
CQUAD4       243       1     256     255     276     277     90.         
CQUAD4       244       1     257     256     277     278     90.         
CQUAD4       245       1     258     257     278     279     90.         
CQUAD4       246       1     259     258     279     280     90.         
CQUAD4       247       1     260     259     280     281     90.         
CQUAD4       248       1     261     260     281     282     90.         
CQUAD4       249       1     262     261     282     283     90.         
CQUAD4       250       1     263     262     283     284     90.         
CQUAD4       251       1     264     263     284     285     90.         
CQUAD4       252       1     265     264     285     286     90.         
CQUAD4       253       1     266     265     286     287     90.         
CQUAD4       254       1     267     266     287     288     90.         
CQUAD4       255       1     268     267     288     289     90.         
CQUAD4       256       1     269     268     289     290     90.         
CQUAD4       257       1     270     269     290     291     90.         
CQUAD4       258       1     271     270     291     292     90. 
CQUAD4       259       1     272     271     292     293     90.         
CQUAD4       260       1     273     272     293     294     90.         
CQUAD4       261       1     275     274     295     296     90.         
CQUAD4       262       1     276     275     296     297     90.         
CQUAD4       263       1     277     276     297     298     90.         
CQUAD4       264       1     278     277     298     299     90.         
CQUAD4       265       1     279     278     299     300     90.         
CQUAD4       266       1     280     279     300     301     90.         
CQUAD4       267       1     281     280     301     302     90.         
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CQUAD4       268       1     282     281     302     303     90.         
CQUAD4       269       1     283     282     303     304     90.         
CQUAD4       270       1     284     283     304     305     90.         
CQUAD4       271       1     285     284     305     306     90.         
CQUAD4       272       1     286     285     306     307     90.         
CQUAD4       273       1     287     286     307     308     90.         
CQUAD4       274       1     288     287     308     309     90.         
CQUAD4       275       1     289     288     309     310     90.         
CQUAD4       276       1     290     289     310     311     90.         
CQUAD4       277       1     291     290     311     312     90.         
CQUAD4       278       1     292     291     312     313     90.         
CQUAD4       279       1     293     292     313     314     90.         
CQUAD4       280       1     294     293     314     315     90.         
CQUAD4       281       1     296     295     316     317     90.         
CQUAD4       282       1     297     296     317     318     90.         
CQUAD4       283       1     298     297     318     319     90.         
CQUAD4       284       1     299     298     319     320     90.         
CQUAD4       285       1     300     299     320     321     90.         
CQUAD4       286       1     301     300     321     322     90.         
CQUAD4       287       1     302     301     322     323     90.         
CQUAD4       288       1     303     302     323     324     90.         
CQUAD4       289       1     304     303     324     325     90.         
CQUAD4       290       1     305     304     325     326     90.         
CQUAD4       291       1     306     305     326     327     90.         
CQUAD4       292       1     307     306     327     328     90.         
CQUAD4       293       1     308     307     328     329     90.         
CQUAD4       294       1     309     308     329     330     90.         
CQUAD4       295       1     310     309     330     331     90.         
CQUAD4       296       1     311     310     331     332     90.         
CQUAD4       297       1     312     311     332     333     90.         
CQUAD4       298       1     313     312     333     334     90.         
CQUAD4       299       1     314     313     334     335     90.         
CQUAD4       300       1     315     314     335     336     90.         
CQUAD4       301       1     317     316     337     338     90.         
CQUAD4       302       1     318     317     338     339     90.         
CQUAD4       303       1     319     318     339     340     90.         
CQUAD4       304       1     320     319     340     341     90.         
CQUAD4       305       1     321     320     341     342     90.         
CQUAD4       306       1     322     321     342     343     90.         
CQUAD4       307       1     323     322     343     344     90. 
CQUAD4       308       1     324     323     344     345     90.         
CQUAD4       309       1     325     324     345     346     90.         
CQUAD4       310       1     326     325     346     347     90.         
CQUAD4       311       1     327     326     347     348     90.         
CQUAD4       312       1     328     327     348     349     90.         
CQUAD4       313       1     329     328     349     350     90.         
CQUAD4       314       1     330     329     350     351     90.         
CQUAD4       315       1     331     330     351     352     90.         
CQUAD4       316       1     332     331     352     353     90.         
CQUAD4       317       1     333     332     353     354     90.         
CQUAD4       318       1     334     333     354     355     90.         
CQUAD4       319       1     335     334     355     356     90.         
CQUAD4       320       1     336     335     356     357     90.         
CQUAD4       321       1     338     337     358     359     90.         
CQUAD4       322       1     339     338     359     360     90.         
CQUAD4       323       1     340     339     360     361     90.         
CQUAD4       324       1     341     340     361     362     90.         
CQUAD4       325       1     342     341     362     363     90.         
CQUAD4       326       1     343     342     363     364     90.         
CQUAD4       327       1     344     343     364     365     90.         
CQUAD4       328       1     345     344     365     366     90.         
CQUAD4       329       1     346     345     366     367     90.         
CQUAD4       330       1     347     346     367     368     90.         
CQUAD4       331       1     348     347     368     369     90.         
CQUAD4       332       1     349     348     369     370     90.         
CQUAD4       333       1     350     349     370     371     90.         
CQUAD4       334       1     351     350     371     372     90.         
CQUAD4       335       1     352     351     372     373     90.         
CQUAD4       336       1     353     352     373     374     90.         



www.manaraa.com

500 

 

CQUAD4       337       1     354     353     374     375     90.         
CQUAD4       338       1     355     354     375     376     90.         
CQUAD4       339       1     356     355     376     377     90.         
CQUAD4       340       1     357     356     377     378     90.         
CQUAD4       341       1     359     358     379     380     90.         
CQUAD4       342       1     360     359     380     381     90.         
CQUAD4       343       1     361     360     381     382     90.         
CQUAD4       344       1     362     361     382     383     90.         
CQUAD4       345       1     363     362     383     384     90.         
CQUAD4       346       1     364     363     384     385     90.         
CQUAD4       347       1     365     364     385     386     90.         
CQUAD4       348       1     366     365     386     387     90.         
CQUAD4       349       1     367     366     387     388     90.         
CQUAD4       350       1     368     367     388     389     90.         
CQUAD4       351       1     369     368     389     390     90.         
CQUAD4       352       1     370     369     390     391     90.         
CQUAD4       353       1     371     370     391     392     90.         
CQUAD4       354       1     372     371     392     393     90.         
CQUAD4       355       1     373     372     393     394     90.         
CQUAD4       356       1     374     373     394     395     90. 
CQUAD4       357       1     375     374     395     396     90.         
CQUAD4       358       1     376     375     396     397     90.         
CQUAD4       359       1     377     376     397     398     90.         
CQUAD4       360       1     378     377     398     399     90.         
CQUAD4       361       1     380     379     400     401     90.         
CQUAD4       362       1     381     380     401     402     90.         
CQUAD4       363       1     382     381     402     403     90.         
CQUAD4       364       1     383     382     403     404     90.         
CQUAD4       365       1     384     383     404     405     90.         
CQUAD4       366       1     385     384     405     406     90.         
CQUAD4       367       1     386     385     406     407     90.         
CQUAD4       368       1     387     386     407     408     90.         
CQUAD4       369       1     388     387     408     409     90.         
CQUAD4       370       1     389     388     409     410     90.         
CQUAD4       371       1     390     389     410     411     90.         
CQUAD4       372       1     391     390     411     412     90.         
CQUAD4       373       1     392     391     412     413     90.         
CQUAD4       374       1     393     392     413     414     90.         
CQUAD4       375       1     394     393     414     415     90.         
CQUAD4       376       1     395     394     415     416     90.         
CQUAD4       377       1     396     395     416     417     90.         
CQUAD4       378       1     397     396     417     418     90.         
CQUAD4       379       1     398     397     418     419     90.         
CQUAD4       380       1     399     398     419     420     90.         
CQUAD4       381       1     401     400     421     422     90.         
CQUAD4       382       1     402     401     422     423     90.         
CQUAD4       383       1     403     402     423     424     90.         
CQUAD4       384       1     404     403     424     425     90.         
CQUAD4       385       1     405     404     425     426     90.         
CQUAD4       386       1     406     405     426     427     90.         
CQUAD4       387       1     407     406     427     428     90.         
CQUAD4       388       1     408     407     428     429     90.         
CQUAD4       389       1     409     408     429     430     90.         
CQUAD4       390       1     410     409     430     431     90.         
CQUAD4       391       1     411     410     431     432     90.         
CQUAD4       392       1     412     411     432     433     90.         
CQUAD4       393       1     413     412     433     434     90.         
CQUAD4       394       1     414     413     434     435     90.         
CQUAD4       395       1     415     414     435     436     90.         
CQUAD4       396       1     416     415     436     437     90.         
CQUAD4       397       1     417     416     437     438     90.         
CQUAD4       398       1     418     417     438     439     90.         
CQUAD4       399       1     419     418     439     440     90.         
CQUAD4       400       1     420     419     440     441     90.         
CONM2        401     421       0    5.-4      0.      0.      0.        +        
+             0.      0.      0.      0.      0.      0. 
CONM2        403     177       0    5.-4      0.      0.      0.        +        
+             0.      0.      0.      0.      0.      0. 
ENDDATA
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APPENDIX E. META-MODEL BASED TEST-ANALYSIS CORRELATION 

This section presents a method for modal correlation based on different principles 

than those of the primary damage identification algorithm. The described process, 

referred to as the meta-model based test-analysis correlation method, is based on training 

and optimizing fast-running meta-models in place of a detailed physical model, and could 

be used as a preliminary step before damage identification or solely for the general 

correlation task of bettering a model’s adherence to measured data. The chapter 

summarizes work previously presented with co-authors in references [E-1] and [E-2].  

The basics of the meta-model based test-analysis correlation method are outlined 

first followed by a discussion of general implementation considerations. Although the 

method is initially described with reference to general application, subsequent detail is 

given with specific reference to updating a finite element model using modal data and 

polynomial meta-models. Three issues encountered in practical implementation are 

discussed along with additional algorithmic routines to help address these issues. To test 

the meta-model test-analysis correlation technique multi-stage correlation was performed 

on the lightweight composite wing structure discussed in Chapter 7. Material stiffness 

and density properties were selected as correlation variables and modal frequencies 

selected as algorithm features. Polynomials up to the quadratic level were used to form 

the required meta-models, one for each feature, and central-composite design-of-

experiments were used to create all meta-model training data. Correlation was applied to 
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the wing pieces independently and then the assembled wing model compared to measured 

data. Results from the meta-model are compared to the same correlation performed using 

a traditional Newton-Raphson based approach. 

E.2 Method Overview  

The meta-model based test-analysis-correlation method presented herein is based 

on standard practices from the larger methodology of model verification and validation, 

for example as presented in references [E-3], [E-4], and [E-5]. The basic concept is to fit 

fast running meta-models (a.k.a. numerical emulators, response surfaces, or surrogate 

models) to a set of physical model response data, and then numerically optimize the 

meta-models in place of the slow-running physical model. Implementation requires the 

following steps:  

(1) Select correlation variables and response features; 

(2) Run the models with specific combinations of variable perturbations 

according to a predefined design-of-experiments and store results as training 

data; 

(3) Fit meta-models to the training data, one for each response feature (meta-

model optimization); 

(4) Optimize the meta-models to match the experimental response features 

(test-analysis optimization); 
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(5) Return the optimized meta-model variables to the original physical model, 

check correlation, and repeat iteratively if necessary;  

In addition to the main correlation algorithm, there are three algorithmic routines 

which help address issues with implementation. The first is a routine to ensure the correct 

modes are always being used as they switch order during variable variation. The second 

is a routine to help avoid local minima when the meta-models are being optimized by a 

standard line-search optimization function. The third is iterative capability to address lack 

of fit between the meta-models and physical model as well other errors and shortcomings.  

There are benefits to the meta-model test-analysis correlation method compared to 

more traditional methods for model correlation, such as those based on direct application 

of least-squares optimization (e.g., the pseudo Newton Raphson techniques described in 

Section 6.1). One benefit is that the meta-model test-analysis correlation method has the 

capability to update a large number of different variables, and to do so on the basis of 

minimizing (or maximizing) a large assortment of different response features, while 

remaining stable. This is largely due to the main update optimization being performed on 

meta-models instead of the physical model, meaning sophisticated optimization 

algorithms can be efficiently applied including options for variable constraints, 

weighting, and regularization. Another benefit is that the correlated meta-models can be 

subsequently used to propagate statistical uncertainty and variability information through 

the model, providing a much more complete understanding of the model and structure 

than allowed by most standard correlation methods.  
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The fundamental requirements of the meta-model based test-analysis correlation 

method are now discussed.  In remaining discussions variable refers to any of the 

physical model input parameters used for the correlation process (e.g., material 

properties), and feature refers to a model output quantity used to create a metric for 

quantifying and evaluating response (e.g., a modal frequency). The word parameter, 

when used, generally refers to the various input quantities of the correlation algorithm 

itself. 

E.2.1 Meta-Model Training Data 

The first task involved in meta-model based test-analysis correlation is to identify 

physical model variables and features—the model input and output sets, respectively—to 

be used during correlation. For example, if trying to correlate an aluminum plate finite-

element model with vibration data, the selected variables might be Young’s modulus, 

shear modulus, density, and plate thickness, and the selected features might be the first 

ten natural frequencies and mode shape deflections at specified points. Each variable then 

requires an expected perturbation level—which is referenced to ensure finite element 

model input-output behavior is modeled over a meaningful range—and global bounds—

which stop variable values from becoming non-physical during test-analysis-

optimization.  

After the variable space and feature sets are defined, a design-of-experiments is 

established in order to define sets of variable value combinations which represent the 
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variable-space of interest. The functional form of the design-of-experiment is an array of 

specified combinations of variable values. The finite element model is run at each of 

these design-of-experiment variable combinations and the resulting feature sets saved. 

This database of finite element input-output cases, initially ordered by the design-of-

experiments, is what is used to then train the meta-models.  

E.2.2 Meta-Model Type and Training 

The basic concept of a meta-model—a numerical response surface—is given in 

Figure E-1 for two variables. There are potentially unlimited forms that a meta-model can 

take, and few limits provided that it combines numerical representations of the chosen 

physical model variables (input) to give numerical representations of the required 

physical model features (output), thereby modeling the physical model input-output 

relationship over the desired range. In addition, meta-models should be computationally 

efficient compared to the physical model, ideally by many orders of magnitude in order 

to expose the benefits of the method with respect to optimization and potential post-

processing computations (e.g., Monte-Carlo based uncertainty propagation). Simple 

mathematical equations are desired, including polynomials, nonlinear functions, Gaussian 

process models, or artificial neural networks. 
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Figure E-1: Schematic representation of a meta-model response surface for two variables. 

 

One simple but powerful meta-model form, and the one investigated for the 

remainder of this chapter, is families of polynomials, with each correlation feature 

modeling using an independent polynomial in terms of the physical model variables. For 

example, if N variables are represented by iX , 1...i N , and M features are represented 

by kY , 1...k M , then the most basic family of polynomials, including direct linear 

dependencies and no interactions, will take the form  

 

1 11 12 1 13 2 1

2 21 22 1 23 2 2

1 2 1 3 2

...
...

...
... .

N N

N N

M M M M MN N

Y c c X c X c X

Y c c X c X c X

Y c c X c X c X

 (E.1) 

If 2N
 
and 3M , adding the interaction term 1 2X X  and quadratic terms 2

1X  and 2
2X  

gives the more capable polynomial family 
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2 2
1 11 12 1 13 2 14 1 2 15 1 16 2

2 2
2 21 22 1 23 2 24 1 2 25 1 26 2

2 2
3 31 32 1 33 2 34 1 2 35 1 36 2 .

Y c c X c X c X X c X c X

Y c c X c X c X X c X c X

Y c c X c X c X X c X c X

 (E.2) 

These equations can be further collected into matrix form as 

 Y c X , (E.3) 

where 

 
1

2

3

Y
Y Y

Y
 (E.4) 

is the vector of model features, 

 

1

2

1 2
2
1
2
2

1
X

X
X X X

X

X

 (E.5) 

is the vector of model variables, and 

 
11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

c c c c c c
c c c c c c c

c c c c c c
 (E.6) 

is the matrix of polynomial coefficients which are trained to define the meta-model. It is 

also possible to add higher order direct dependency terms up to 1
mX  and 2

mX  for an mth 
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order polynomial and interaction terms 1 2
jiX X  for each combination of i and j up to m, 

for an mth order polynomial, with each additional term requiring another polynomial 

coefficient for each feature. Training the meta-models then requires determining the 

matrix c  such that the relationship between X  and Y  in the physical model is 

approximately reproduced. 

Before training the polynomial meta-models, the physical model is run for 

different combinations of variables according to a design-of-experiment and the resulting 

feature values are stored, creating a database of the input-output behavior of the physical 

model. The minimum number of physical model runs required is determined by the 

number of variables, polynomial order, and number of interactions being pursued. 

However, meta-model accuracy will increase with the amount of information available 

for training, and so the actual number of physical runs should be dictated primarily by 

computational budget limitations, with extra runs above the minimum used to increase 

meta-model fidelity and range. Once the training data is available, the meta-model 

coefficient matrix c  is determined row-by-row (i.e., feature by feature) by 

unconstrained numerical optimization. For each feature, the numerical optimization 

scheme seeks the corresponding c  row values which best reproduce the training 

features output for corresponding training variables as input.  
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E.2.3 Test-Analysis Optimization 

A second optimization step, referred to herein as test-analysis optimization, is 

performed directly on the trained meta-models to find a set of variables which minimizes 

a cost function between the meta-model output features and a set of reference features. 

This step is essentially the same as normal model correlation optimization except the 

meta-models are used in place of the physical model. Whereas the previous meta-model 

training optimization step is applied to establish values for the meta-model coefficients in 

c , the test-analysis optimization step leaves c  fixed, and instead updates the meta-

model variables in X  in order to match the experimental feature values YY  in the 

equation 

 Y c XY c X . (E.7) 

The optimized variables are then returned to the finite element model to produce the 

correlated model and a set of correlated features which can be used to evaluate success.  

One major benefit of the meta-model based test-analysis correlation method 

compared to standard direct correlation optimization methods is the ability to apply 

sophisticated optimization algorithms, including the use of constraints, weighting, 

regularization, and higher-order convergence approaches. Additionally, global 

optimization techniques become more easily available, and, in fact, it can be 

computationally realistic to apply multiple optimization techniques either sequentially or 
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in parallel to increase the chance of success. Applying these algorithms directly to the 

correlation of realistically sized and detailed physical models is generally not possible 

because of computational constraints and the difficulty in obtaining second-order (i.e., 

hessian) and higher sensitivity relationships for physical models. However, with meta-

models the computational requirements are minimal and sensitivity relationships can be 

produced easily to high order. Additionally, once the meta-models have been formed, the 

optimization can potentially be performed very accurately because of the potential for 

deriving sensitivity relationships in closed form instead of relying on finite-difference 

methods. Because the entire model is now represented by a series of polynomials or 

similar there are very few, if any, constraints on the type or sophistication of test-analysis 

correlation which can be used.   

E.3 Implementation Considerations and Algorithmic Additions 

In order to implement the method, there are several main parameter configuration 

steps which must be addressed: 

(1) Feature selection 

(2) Variable selection 

(3) Meta-model type 

(4) Design of experiments type 

(5) Definition of variable nominal values, perturbation levels, and bounds 
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(6) Optimization cost-function metric 

Most of these parameters require balancing capability and accuracy with 

computational expense. It is therefore useful to begin by estimating a computational 

budget—how long you can afford each correlation to take. Once a budget is set, the other 

pieces can be organized as follows.  

E.3.1 Feature Selection 

The model’s intended use, and the features which will be required from the 

correlated model, should be examined first for the update feature set. Additionally, 

however, it can be desirable to maintain the model’s physical correctness and thus 

features which may not be used once the model is correlated can still be included during 

update to help keep the model physically accurate and increase the confidence in which it 

can be used thereafter. From this pool, it is desirable to down-select to features which are 

sensitive to the input variables and relatively stable through the required finite element 

model runs as the variable values vary. If different feature forms are to be combined in 

one update—e.g., natural frequencies and mode shapes—there can be problems with low 

sensitivity features driving variable update, so maintaining relative equality between 

feature sensitivity can help with physically meaningful results. (See next section for notes 

on analysis of variance as a means of estimating feature-variable sensitivity.) Weighting 

can also potentially be applied to alleviate this problem; however, this is not explored 

further here.  
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E.3.2 Variable Selection and Analysis of Variance 

Similarly, any type of variable which impacts the chosen physical model feature 

can theoretically be used for meta-model based test-analysis correlation, although, as 

with all model correlation techniques, judicious selection of specific variables should be 

applied in order to keep the model as physically reasonable as possible. Any number of 

variables is also theoretically possible; however, computational expense exponentially 

increases with extra variables, primarily because of the need to investigate variable 

interactions and the subsequent expansion of the design-of-experiments mandated 

physical model run count required to create the training database.  

The phenomenon influence and ranking table, or PIRT, is an organizational tool 

which can be used to identify possible correlation variables and give a qualitative 

estimation of their importance. One way of proceeding is as follows. First, all possible 

variables which can be varied to affect the response of the model are listed. Next, each 

variable’s assumed relative influence on the model response, and the total level of 

uncertainty—numerical uncertainty, influence uncertainty, etc.—are written in 

neighboring columns in the form of a rough qualitative scale (e.g., low, medium, high). 

Finally, a third column is added which reflects the product of the uncertainty with the 

influence, giving the qualitative importance of each variable and a qualitative basis for 

down-selecting. Table E-1 gives an example of what a PIRT could look like for a case 

considering several material properties.  
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Table E-1: Example of phenomenon and influence ranking table. 

Variable Uncertainty Influence Importance (Product) Update Variable Set 

E11 high High High E11 

E22 high High High E22 

ν 12 high low medium ν12 

E12 high med high high G12 

E13 medium very low low - 

E23 medium very low low - 

ρ medium very high high ρ 

 

 

Another tool for down-selecting variables is analysis of variance, or ANOVA—a 

statistical significance testing process which estimates the impact a variable has on the 

total variability. The influence is calculated using the 2R  statistic, which estimates the 

ratio of the variance of the response when that variable is fixed to the variance of 

response when the variable is free (also known as the correlation ratio 2 ). The 2R  

statistic is calculated for each feature with respect to each variable using data from 

design-of-experiment model runs via the equation   

 

2
,

1 12

2

1

1

L R

P

k j k
k j

N

j
j

N N
y y

R
y y

, (E.8) 

where jy is the jth data point for the current feature, y  is the mean feature value across 

all data points, ,k jy  is the jth data point for the current feature with the current variable 

fixed at its kth value, ky  is the mean feature value for all data points with the current 
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variable fixed at its kth value, NP is the number of data points for the current feature, NR is 

the number of data points for the current feature with the current variable fixed at its kth 

value, and NL is the number of values for which the current variable is fixed across the 

available data. Once 2R  values have been calculated for all variables and all features of 

interest, they are compared. Variables showing high 2R  values can then be selected as 

those most likely to be influential on the model response (at least for the features of 

interest), and thus those that should be updated. If enough runs can be justified, 

parameters with estimated low importance (or even fabricated parameters with zero 

influence, initiated with producing random feature response levels) can be included as 

‘sanity checks’, since the ANOVA should show that they do not correlate to the feature 

response. 

The ANOVA can also potentially be used to estimate the sensitivity of features to 

variables, giving a basis for further down-selecting features or removing those with low 

sensitivity. 

E.3.3 Meta-Model Order 

Polynomial meta-models can potentially be created to any polynomial order, 

including variable interactions to any order, as discussed in Section E.2. Ideally, the 

polynomial order should be chosen to mimic expected physical model behavior across 

variable range (linear, quadratic, cubic, or higher). However, the number of design-of-

experiment mandated training runs required to train the meta-models will increase 



www.manaraa.com

515 

 

exponentially with meta-model order in addition to the exponential increase already 

required to add variables and interactions. This is because the maximum polynomial 

order that can be accurately fit to the training data is limited by the number of training 

points available in any particular variable direction, and increasing the polynomial order 

beyond this limit will increase fidelity to training data but at the cost of losing 

interpolation accuracy. In general, a polynomial of order S  will require 1S  training 

points (for instance, a linear polynomial requires a minimum of two points for fitting, 

whereas a quadratic polynomial requires a minimum of three points). Fitting a higher-

order polynomial with few than this minimum is still possible, but the polynomial 

behavior between the points is unpredictable and meaningless.  

Because computational budget is the main constraint in determining how many 

training runs are available, there is a trade-off between the meta-model order and number 

of variables and interactions which can be investigated and updated. Increasing meta-

model order increases computational cost; however, if too low an order meta-model is 

used variables updated on the basis of these models may not be meaningful when 

returned to the physical model. Ensuring a minimum acceptable meta-model order 

therefore should be given high priority, even if fewer variables can subsequently be used 

for update. On the other hand, if the cost can be afforded, using a higher order meta-

model than is required for the physical model order should not harm results, assuming 

enough training runs are available, since meta-model training should eliminate the 

influence of the unnecessary higher-order terms. Meta-model order also factors into 
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feature selection, since some model features will demonstrate lower order behavior over 

the variable space than others and thus may lead to more meaningful update results 

overall. 

For the remainder of this study, three main meta-model types are considered, of 

increasing order. Linear meta-models include only direct variable effects, with the form 

 1 11 12 1 13 2Y c c X c X , (E.9) 

for two variables and one feature. Bilinear meta-models include first-order variable 

interactions, as 

 1 11 12 1 13 2 14 1 2Y c c X c X c X X . (E.10) 

Finally, quadratic meta-models follow the bilinear form, additionally including the 

quadratic variable dependencies, giving the form 

 2 2
1 11 12 1 13 2 14 1 2 15 1 16 2Y c c X c X c X X c X c X . (E.11) 

E.3.4 Design-of-Experiments Type 

The design-of-experiment should be constructed to give feature response data 

across the expected range of variable variation, with the complexity and number of 

combinations dictated by the order of meta-model to be used and the order of variable 
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interactions to be examined. If an ANOVA is to be conducted, the variables should 

additionally be run at a range of fixed values.  

There are standard configurations which fulfill these needs in systematic ways. 

Full factorial designs, represented schematically for a generic three parameter system in 

Figure E-2, are the simplest, most complete, and most expensive options. A two-level 

full-factorial design designates a finite element model run for all possible combinations 

of nominal value plus and minus the specified perturbation for each variable, requiring 2N 

runs for N variables. A three-level full factorial design adds the nominal value in addition 

to plus and minus the perturbation, requiring a total of 3N runs. Central composite 

designs, represented schematically for a generic three parameter system in Figure E-3, 

call for a smaller number of runs with combined variable perturbations in order to only 

investigate select interactions between parameters and are therefore more efficient while 

retaining most of the required accuracy. A central composite design for nine parameters 

requires 147 model runs compared to 512 runs for a two-level full factorial design, and 

19,683 runs for a three-level full factorial design. A three-level full factorial design will 

provide more information than the other two options, and hence more accurate meta-

models and better final correlation; however, the central composite design can provide 

acceptable results and the computational savings becomes immense as the number of 

variables and interactions increases.  
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Figure E-2: Full factorial design for three 
parameters. 2-level with 8 runs is represented 
by blue circles; 3-level with 27 runs is 
represented by blue and green circles. 

Figure E-3: Central composite design for three 
parameters, showing 15 runs. 

 

The design-of-experiments available for a particular case are further limited by 

the minimum meta-model order required to accurately emulate physical model behavior. 

For example, linear polynomial meta-models, which only require two training points per 

variable dimension, can be trained with a two-level full factorial, whereas quadratic meta-

models require at least a three-level full factorial design. Central composite designs allow 

training of linear and quadratic polynomial meta-models; however, with more training 

points being shared between meta-models and fewer overall training points there will still 

be some loss of overall fidelity to the physical model. 

E.3.5 Variable Nominal Values, Perturbation Levels, and Bounds 

The nominal values of variables should generally be taken as the current 

uncorrelated model properties, or otherwise estimated as best as possible. For the sake of 
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implementation, a scaled variable space—e.g., 1 for nominal, 1-Δ for minus the 

perturbation and 1+Δ for plus the perturbation, where Δ represents the scaled perturbation 

amount—can help avoid numerical error when variables have big differences in value. 

The perturbation levels require a qualitative (or quantitative if available) 

estimation of variable uncertainty, and how much the variables are likely to vary during 

update. The perturbation levels will define the values at which design-of-experiment 

training runs are performed, and thus they define the space over which the meta-models 

are trained and likely to be meaningful. Meta-model accuracy will generally be at its 

highest close to the variable levels used for training—i.e., close to the nominal and plus 

and minus perturbation, depending on the specific design. On the other hand, physical 

models, and especially finite element models, will often demonstrate progressively higher 

order behavior as the variables are perturbed further from their nominal values, and thus a 

meta-model order which is appropriate for a low perturbation may generate increasing 

inaccuracy as variable perturbation grows. This effect can be seen in Figure E-4, which 

additionally shows how increasing meta-model order increases fidelity to the underlying 

physical model data (assuming the model is inherently of a higher order than can be 

exactly modeled with lower order meta-models). The perturbation levels should therefore 

be chosen such that correlated variables are within their bounds, and improved meta-

model and correlation accuracy will most likely be achieved by shrinking the perturbation 

to be close to the variable update changes.  

 



www.manaraa.com

520 

 

 
Figure E-4: Example plot of meta-model fidelity to training data as 

variable perturbation is increased. 

 

The bounds—values beyond which the variables cannot move—should be set to 

keep the variables physically meaningful without restricting them to the point that good 

correlation is hindered. As with the perturbation levels, bounds must be established on a 

variable-by-variable basis, with consideration given to how much they can move for the 

model to still run, how much they should move for the model to still be physically 

meaningful, and how much it is desired they move relative to other variables.  
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E.3.6 Optimization Cost-Function Metric 

Cost-functions to be minimized during meta-model training optimization and test-

analysis optimization must also be specified for update to proceed. The most common 

cost-functions used in optimization are of the sum-of-squares error type, where the 

differences between predicted features Y  and reference features YY  are squared and 

summed, giving a scalar cost-function J  as 

 
2

1

F

j j
j

N
J Y Y

2
j jY Yj jYj , (E.12) 

for FN  features being optimized. This general cost function form can also be generalized 

to the sum of higher or lower powers of feature difference, as   
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,    0
F p

p j j
j

N
J Y Y pj j ,   j j

p
Y Y

p
Y Y ,   j jj . (E.13) 

 There are many other cost function forms that can be used during the two 

optimization steps, as long as they work with the optimization scheme to bring the meta-

models and training data, and correlation variables and reference data, into accordance, 

respectively. 

E.4 Practical Implementation Issues and Algorithmic Additions 

The meta-model based test-analysis correlation method was implemented for 

validation in the interest of updating a finite element model by minimizing natural 
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frequency differences. Three areas of implementation concern were identified—mode 

switching, local minima, and single iteration error—and algorithmic components were 

added to address each issue, as described below. 

E.4.1 Mode Switching  

In certain cases, when using modal data as features for correlation, there can be 

the tendency for modes to switch and blur between runs as variables are altered. Three 

steps can be taken to deal with this problem: (1) lower the perturbation, (2) only use 

modes that are stable across the variable space in spite of perturbations, and/or (3) 

include additional routines to track the modes and ensure correct frequencies are being 

compared.  

For the implementation described herein, a mode tracking routine was written to 

automatically realign the physical model modes with the experimental reference modes 

by referencing the modal assurance criterion generated for each meta-model training run, 

using the equation 

 

H H
i j i j

ij H H
i j i j

MAC

H H
i j i ji j i jj i

ii j
H HH

ii j

, (E.14) 

where iii  is the reference mode shape vector for mode i, j  is the model mode shape 

vector for mode j, and ... H  refers to the Hermitian, or complex conjugate transpose, for 

the given vector. Since the reference modes don’t change order, the physical model 
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modes are switched as necessary to give the highest modal assurance criterion values for 

each mode. It should be noted that this routine can only be used in cases where the mode 

shapes are available, such as during design-of-experiment training runs using a finite 

element model. 

Another possible way of dealing with mode switching is to exclude closely spaced 

and unstable modes. Using the mode tracking routine along with careful feature selection 

means that the perturbation amount can be kept fairly high to cover the variable space 

without causing unmanageable mode switching. 

E.4.2 Local Minima  

The second major implementation issue involves the susceptibility of all 

sensitivity based line-search optimization methods to getting stuck at local minima points 

before reaching the global minimum. These locally minimum points in the variable space 

can easily occur in realistically sized finite element correlation problems when including 

a large number of update variables. For model correlation, it is desired to find a global 

minimum within the bounds imposed on the variables, and local minima will therefore 

give results which, although likely to be improved from the uncorrelated case, are not as 

good as possible or desired.  

Figure E-5 illustrates the occurrence of local minima, showing the results of two 

analytical correlation cases where the design-of-experiment was used to provide multiple 

starting points for the test-analysis optimization step—one starting point from each  
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Figure E-5: Plots showing example results of multiple TAC runs, showing (a) local minima in the 
majority of runs, and (b) majority global minima. 
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design-of-experiment variable combination. Ideally, if the routine is finding the global 

minimum, every run will produce the same error (in this case equal to zero, since 

analytical data was used to provide an idealized test case) as can be seen for the majority 

of runs in Figure E-5(a). In a problem where there are bad local minima, however, the 

optimization converges to solutions that do not give the lowest possible error, sometimes 

only rarely achieving the global minimum, as is shown in Figure E-5(b). In this case, 

there are approximately five local minima that the update converges to, each one 

corresponding to a different overall error level, and it is only in a small number of the 

attempted runs that the zero error global minimum is reached.  

To combat this problem in the meta-model based test-analysis correlation method, 

a routine was implemented to run the test-analysis optimization multiple times, once from 

each design-of-experiment variable combination—as was done to create Figure E-5—and 

keep the solution with lowest mean relative error. This is an ad-hoc solution, with no 

guarantee of producing the true global minimum; however, in practice the routine 

improves results markedly. It should be noted that the search for global minima in multi-

variable optimization is a problem that has not been solved outside of particular 

applications, and may possibly not be solvable in a closed-form sense without brute-force 

sampling of every possible variable combination. 
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E.4.3 Iterative Capability 

The third implementation issue involves iterating the entire meta-model based 

test-analysis correlation method to account for errors. Every stage of the meta-model 

based test-analysis correlation process involves some approximation, and the resulting 

errors compound into the final solution. Following the path of standard linear least-

squares optimization for nonlinear problems, iterating the entire process allows a more 

accurate solution to be converged upon, since the errors in any given optimization run are 

usually proportional to the size of the required single-step variable update.  

To include iterations with the meta-model based test-analysis correlation method, 

the correlated variables at each step are used as starting values for the next iteration, 

variable perturbations are updated to better match the expected variable change on the 

next step (usually smaller as the solution converges), a new design-of-experiment is 

generated accordingly, and the process continues. Iterating increases computational 

expense multiplicatively; however, if care is taken to set up the process parameters, and 

in particular to choose meta-models that emulate the training data well, desirable results 

can be achieved with a very few iterations. Iterating, however, also has the ability to 

generate instability. To counter this possible problem, physically realistic global 

parameter bounds should be implemented. (A demonstration of how iterative capability 

can improve final correlation is given in Section E.5.) 
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E.5 Code and Preliminary Validation  

The meta-model based test-analysis correlation method was implemented in 

Matlab 7.0 [E-6] for use with MD. NASTRAN [E-7] finite element models. Code details 

and function are provided next, followed by results of initial validation studies using a 

sandwich plate.  

E.5.1 Code Details 

The code was designed to be free-running from program start to correlation end, 

including automated capability to write updates to NASTRAN input files (*.BDF), call 

NASTRAN to solve the normal modes problems, and read modal data from NASTRAN 

output files (*.F06). The built-in Matlab functions ccdesign and fullfact were used to 

generate central composite and full factorial design-of-experiments, respectively, and the 

constrained non-linear optimization function fmincon from the optimization tool-box was 

used for both meta-model training and test-analysis optimization. Once input parameters 

are specified—including feature sets, variable sets, nominal values, perturbations, 

bounds, meta-model order, design-of-experiment type, optimization cost-function type, 

convergence criteria, and number of iterations to run—the code would run the following 

sequence of operations:  

(1) Generate the design-of-experiments using the provided variable nominal 

values and perturbations;  
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(2) Run the finite-element model according to the design-of-experiment 

variable levels, saving the requested features for each variable level;  

(3) Run an analysis of variance, if requested;  

(4) Train the meta-models using unconstrained optimization;  

(5) Perform test-analysis optimization on the meta-models to get updated 

variable values;  

(6) Return the updated variable values to the finite element model to get 

updated feature values;  

(7) Assess correlation success and convergence;  

(8) Break from further correlation if results were converged, or loop back to 

step (1) using the new variable values as nominal values. 

E.5.2 Preliminary Validation Studies on a Composite Sandwich Plate 

The meta-model based test-analysis correlation code was first applied to the 

0.254×0.30 m rectangular composite sandwich plate and model discussed in Section 7.4.2 

to demonstrate basic code functionality, investigate the performance of the iterations 

routine, and provide additional information on meta-model type performance. The plate 

was fabricated using the same 5-harness satin weave graphite-epoxy material system used 

for the scaled wing sandwich material system with a layup of [0/core/0]T.   

Two reference data cases were considered using the first 10 natural frequencies as 

correlation features in each case: (1) Analytically generated modal data, created using the 
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finite element model to produce an idealized zero-error case; and (2) experimentally 

measured modal data, including irreducible error from modeling and experimental data 

acquisition. Both cases used a basic variable set of E11, E22, ν12, and G12, for the laminate, 

plus G23 and G13 for the core. For the experimental reference data case, a second smaller 

update variable case was additionally considered using only E11 and E22 for the laminate 

plus G23 and G13 for the core. Perturbation was 8% and 6% for the first two iterations 

with a further 0.8 reduction factor each iteration thereafter. A central composite design 

was used to generate the design-of-experiment runs, and all three candidate meta-model 

types were applied.  

The code was shown to be functioning as expected. Figure E-6 shows results from 

the respective cases—(a) analytical reference data, (b) experimental reference data using 

6 variables, and (c) experimental reference data using 4 variables. All cases show that a 

single iteration does not provide the best answer, but that correlation is reached by the 

third iteration for the linear and bilinear meta-models, and by the second iteration with 

quadratic meta-model. Additionally, quadratic meta-models were shown to produce the 

best accuracy in every case. Although the experimental data reference case does not reach 

zero error there is obvious convergence, which shows that the iterations can help in the 

case of error from imperfect modeling and experimental reference data acquisition. 

The relative efficiency of the different meta-model types was also investigated by 

measuring how long each portion of the code would take to run. Results, summarized in 

Figure E-7 in terms of normalized run time for each code module, showed that, although  
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Figure E-6: Plots showing iteration-based convergence of the rectangular sandwich plate model to (a) 
finite element-generated analytical reference data using 6 variables, (b) experimentally measured 
vibration reference data using 6 variables, and (c) experimentally measured vibration reference data 
using 4 variables.  
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Figure E-7: Results of an investigation into the relative computational expense of the code modules 
for different meta-model types: (a) Per iteration computational expense using analytical reference 
data; (b) Total computational expense including iterations using analytical reference case; (c) Per 
iteration computational expense using experimental reference data; (d) Total computational expense 
including iterations using experimental reference data. 
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quadratic meta-models require longer per iteration, they can be faster overall by leading 

to faster convergence and therefore fewer iterations. It can also be seen in this figure that 

generating the original meta-model training data requires a large percentage of the over-

all correlation time. 

E.6 Correlation of an Experimental Wing Structure 

The meta-model test-analysis correlation technique was demonstrated using the 

lightweight composite wing structure, model, and vibration data presented in Chapter 7. 

Material stiffness and density properties were selected as correlation variables and modal 

frequencies selected as algorithm features. Polynomials up to the quadratic level were 

used to form the required meta-models, one for each feature, and central-composite 

design-of-experiments were used to create all meta-model training data. 

E.6.1 Preliminary Correlation Variables Selection 

As a first step to the correlation process, an initial pool of material properties—

stiffnesses and densities—that could possibly be used for correlating the model was 

identified. It was decided for all pieces to treat properties in the material ‘1’ and ‘2’ 

directions independently (i.e., E11 independent from E22 and G13 independent from G23). 

Furthermore, for the skins it was decided to treat the sandwich structure laminates 

separately from the plain laminate areas, allowing for the possibility of different 
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properties resulting from the co-cure process. This separation extended to the laminate 

density in this area relative to the density in the plain laminate areas. Equations were 

implemented in the code to modify the plain laminate density based on variations in the 

sandwich-laminate density, keeping the overall mass of the piece equal to the measured 

value. Finally, for the skins it was decided to include the possible influence of the 

honeycomb core properties.  

For the spars, the caps were treated independently from the shear webs. There was 

more uncertainty in selecting parameters from these pieces because of the difference in 

natural modal response while in component form compared to their influence in the 

bonded wing for which they were designed. In other words, only E11 down the length of 

the caps and the in-plane shear properties through the shear web (and the density) 

significantly influence the assembled wing response; however, for free-free component 

pieces it was less obvious how the different material properties would affect response. 

The PIRT for the skins is shown in Table E-2 and the PIRT for the spars is shown in 

Table E-3. 
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Table E-2: Phenomenon influence and ranking tables for parameter 
identification and screening for top and bottom wing skins. 

Region Parameter Uncertainty Influence 
Importance  
(Product) 

Extended  
Parameter 

Skin 
Plain 
Laminate  
(L) 

E11 high High high E11(L) 

E22 high High high E22(L) 

ν 12 high low medium ν12(L) 

G12 high med high high G12(L) 

G13 medium very low low - 

G23 medium very low low - 

ρ medium very high high Dependent 

Skin 
Sandwich  
Laminate  
(S) 

E11 very high high very high E11(S) 

E22 very high high very high E22(S) 

ν 12 high low medium ν12(S) 

G12 very high medium high G12(S) 

G13 medium very low low - 

G23 medium very low low - 

ρ high very high very high ρ(S) 

Skin 
Sandwich  
Core  
(C) 

E33 low low very low - 

G23 medium medium medium G23(C) 

G13 medium low low - 
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Table E-3: Phenomenon influence and ranking tables for parameter 
identification and screening for main and aft wing spars. 

Region Parameter Uncertainty Influence 
Importance 
(product) 

Extended 
parameter 

Spar 
Laminate 
Cap 
(P) 

E11 medium very high high E11(P) 

E22 medium very low med low E22(P) 

ν 12 high low medium ν12(P) 

G12 high medium med high G12(P) 

G13 high medium med high G13(P) 

G23 med low low low - 

Spar 
Laminate 
Web 
(W) 

ρ medium high high E11(W) 

E11 medium high high E22(W) 

E22 very high low med high ν12(W) 

ν 12 high low  medium G12(W) 

G12 medium low med low G13(W) 

G13 medium low med low G23(W) 

 

It was decided that a 2-level full-factorial design-of-experiments with at most ten 

variables, which would require 210 = 1024 finite element runs, could be afforded for 

ANOVA based variable screening. The resulting ANOVA plot, shown in Figure E-8 for 

the top skin, shows the relative influence of each parameter on each of the 20 features 

(shown by the columns grouped above each parameter). This plot shows that G12(L) had 

the highest overall influence on the model response, with the highest influence of all 

being towards feature 1. The relative parameter influences shown in the ANOVA 

confirmed the PIRT influence estimates, with the exception of the ν12(L) value, which 

showed higher influence than expected. Also, the G23(C) core shear stiffness coefficient 
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proved to have negligible influence as can be seen at the far right side of the plot. These 

observations resulted in the decision to drop G23(C) as an update variable for the wing 

skins. Similar ANOVA based investigation of the spars produced the decision to carry the 

initial correlation variables E11(P), E22(P), ν12(P), G12(P), G13(P), E11(W), E22(W), ν12(W), 

and G12(W) forward. 
 
 
 
 

 

Figure E-8 – Initial analysis of variance plot for top skin using 2-level full-factorial design-of-
experiment. 
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E.6.2 Preliminary Correlation Study on Top Wing Skin 

With initial correlation variables selected, a study was performed on the top wing 

skin component in order to investigate the use of the local-minima reduction routine 

described in Section E.4.2, as well as to provide a basis for selecting a meta-model type 

and initial perturbation level for the full-correlation. Two cases were studied: (1) No 

local-minima reduction, where the test-analysis optimization was carried out once 

starting from the nominal starting variable values; and (2) Including local-minima 

reduction, where the test-analysis optimization was run many different starting points 

with lowest error run being kept as the final result. Each of these cases was run using all 

three meta-model types, over a range of perturbation amounts, for a single iteration each. 

The results are summarized in Figure E-9. Some of the run parameter 

combinations lead to essentially the same result with and without the local-minima 

routine, suggesting that whether or not the global minimum was reached, the local-

minima routine did not improve results. In most cases, however, a superior result was 

achieved by including the local-minima routine, meaning that previously the correlation 

had been caught at local minimum. Unfortunately there is still no guarantee that a global 

minimum will be reached using this routine; however, these results demonstrate that there 

is a better chance of achieving a superior final result by implementing the routine, and 

thus it was decided to include the routine for subsequent correlations.  
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Figure E-9: Results showing net effect of the test-analysis optimization local minima routine on the 
top wing skin component with analytical reference data for a single iteration, over multiple 
perturbation amounts: (a) with no routine and (b) with the routine.  
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The study also showed that although the bilinear meta-model type often leads to 

good results and seems less susceptible to local minima, the best result can still be 

achieved using a quadratic meta-model, if only barely in this case. 

E.6.3 Final Correlation Implementation 

Based on the preliminary correlation study and initial correlation attempts, 

parameters for the final meta-model test analysis correlation were assigned as follows.  

E.6.3.1 Variable Selection 

Based on the desire to include only as many variables as would be useful, the 

expectation to use a central-composite design-of-experiment, and knowledge of the 

approximate run-time of each component model, it was decided that a maximum of ten 

parameters could be used for any one correlation, and fewer if possible. Density, which 

had been included on a relative basis between the plain laminate and sandwich laminate 

regions of the skins so that the total mass was consistent with measured values, was 

dropped after experimentation suggested that its inclusion was hurting the correlation 

overall, probably because of its disproportionately strong influence leading to low meta-

model predictive capability. In the case of the spars, the main cap E11(P) value was 

discarded for correlation because of fears that the experimental reference data, being 

from a C-section in free-free test configuration, was not reliable enough to correlate this 

property with accuracy commensurate to its major influence on the bending behavior of 
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the final assembled wing. Also, it was supposed that that particular property should be 

well represented by the available data from material coupon testing. Final correlation 

variables, eight variables for each skin and seven variables for each spar, are given in 

Table E-4. 

 

 

Table E-4: Final correlation variable sets for each wing component.  

(lam – laminate, SW – sandwich) 

Top skin 

plain lam E11(L) E22(L) ν12(L) G12(L) 

SW lam E11(S) E22(S) ν12(S) G12(S) 

core (none)    

Bottom skin plain lam E11(L) E22(L) ν12(L) G12(L) 

 
SW lam E11(S) E22(S) ν12(S) G12(S) 

core (none)    

Main spar 
cap lam E22(P) ν12(P) G12(P)  

web lam E11(W) E22(W) ν12(W) G12(W) 

Aft spar 
cap lam E22(P) ν12(P) G12(P)  

web lam E11(W) E22(W) ν12(W) G12(W) 

 

 

E.6.3.2 Feature Selection 

The remained some question about whether to use a large number of general 

frequencies or a few carefully selected frequencies. More frequencies would mean wider 

model response coverage, albeit at a higher computational expense since a separate meta-

model must be trained for each; a small number would mean the influence of each is less 
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blurred by condensation into the optimization metric. It was also unclear whether to use 

lower-frequency modes, for their stability and tendency to be dominated by a single 

specific property or two at a time, or higher-frequency modes, which are more sensitive 

frequency-wise to property variation. Experimentation suggested that selecting a larger 

number of frequencies was preferred for these correlation cases. Modal-assurance 

criterion values between the experimental mode shapes and analytical finite element 

mode shapes of each component for different design-of-experiment variable 

combinations were referenced to avoid modes with low or unstable correlation behavior. 

The final mode feature selections are listed in Table E-5.  

 
 

Table E-5: Final correlation feature sets for each wing component. 

Component Top skin Bottom skin Main spar Aft spar 

Feature set 1-12, 14-18 1-10, 14-20 2-9, 11, 12 2, 3-6, 8, 9, 11, 12, 14-17 

 

 

E.6.3.3 Variable Nominal Values, Bounds, and Perturbation Amount 

 The exact initial variable values and bounds used for this study are presented 

along with the correlated results in Table E-6. Initial values for the sandwich region 

variables were approximated using results of the sandwich plate correlation discussed in 

Section E.4.2. Initial variable values for the plain non-sandwich laminate regions, in the 

skins and spars, were based on a mixture of results of material coupon testing, which 



www.manaraa.com

542 

 

were available for E11 and E22, and the results from the sandwich plate. In both cases, the 

low-influence transverse stiffness property values were filled in with generic values for 

similar materials. All honeycomb stiffness properties except for transverse shear (G13 and 

G23) and transverse extensional (E33) were set very small so as to have a negligible effect 

on the model response, to account for honeycomb’s real physical structure. Bounds were 

set somewhat arbitrarily, loosely based on generous physical possibilities. It was 

supposed that manufacturing variation generally lowers stiffness constants, so bounds 

were set to allow more variation towards low values. Perturbation amount was chosen to 

be ±50%, although for the majority of runs (63/80) the effective perturbation was closer 

to ±18% because of the way central-composite design-of-experiment samples the 

requested space. Parametric studies on the wing-skins and sandwich plates suggested this 

to be a reasonable compromise between covering the variable space and remaining close 

to the expected values. In addition, the perturbation amount was set to decrease by a 

factor of two for every iteration starting with the third with the aim of helping 

convergence narrow in on the optimized values if necessary. Analysis of variance plots 

for the final variable and feature combinations are given in Figure E-10 and Figure E-11. 
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Figure E-10: Analysis of variance plots for wing skins with final variable and feature selections: (a) 
top skin and (b) bottom skin. 
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Figure E-11: Analysis of variance plots for wing spars with final variable and feature selections: (a) 
main spar and (b) aft spar. 

E22(P) v12(P) G12(P) E11(W) E22(W) v12(W) G12(W)
0

10

20

30

40

50

60

70

80

90
Results of Final ANOVA for Main Spar

Correlation Variable

R
2  

(%
)

E22(P) v12(P) G12(P) E11(W) E22(W) v12(W) G12(W)
0

10

20

30

40

50

60

70

80

90

100
Results of Final ANOVA for Aft Spar

Correlation Variable

R
2  

(%
)

(b) 

(a) 



www.manaraa.com

545 

 

E.6.3.4 Meta-model Type and Cost Function Metric 

Quadratic polynomial meta-models were chosen for all correlations. For eight 

variables this requires the training of 45 coefficients per feature (i.e., per meta-model). 

Finally, the L2 norm—sum of squared errors—between analytical and reference 

frequencies was used as feature metric for all optimization cost functions. Correlation 

success was evaluated using mean relative error between frequency sets.  

E.6.4 Newton-Raphson Implementation 

The pseudo Newton-Raphson iteration method used in this study is detailed in 

Section 6.1.1. Implementation on the wing components proved the method to be very 

unstable. As with the meta-model based test-analysis correlation method, initial 

parameters—feature set, variable set, starting vales, perturbation amount—all affect the 

outcome. In the Newton-Raphson case, the outcome was usually unviable (e.g., negative) 

variable values which caused the finite element analysis to error and stop. There was a 

question with how many features to include for this correlation, since results and stability 

varied depending on the exact frequencies used. Experimentation in these cases suggested 

that greater stability was allowed by using a large number of frequency features. In the 

end, for the wing skins, convergence was only achieved with a maximum of 6 

variables—E11, E22, and G12 for laminate and sandwich skin regions. The meta model 

based test analysis correlation frequency sets for each piece were used in this analysis 
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along with the pseudo-inverse; initial variable values were set equal to those from the 

meta-model based analysis.  

Results are given alongside meta-model based test-analysis correlation results in 

Table E-6. Pseudo Newton-Raphson correlation results did not converge for the spars, 

probably because of a lack of initial correlation between the model and the experimental 

data. In every attempt, the Newton-Raphson method diverged, producing unviable 

material properties and leading to crashing of the correlation routine. 

E.6.5 Correlation Results and Comparison  

The correlated material properties are given in Table E-6. It can be seen that the 

two methods approached different sets of material properties, suggesting that there was 

still non-uniqueness for at least one of the correlation techniques. Table E-7 and Table 

E-8 provide modal frequency correlation summaries for the wing skins and spars, 

respectively, giving values corresponding to the pertinent variable sets—nominal, 

Newton-Raphson correlated, meta-model based test-analysis correlation method 

correlated—in addition to the experimental reference values. These results are 

additionally summarized in plots of relative error vs. mode number in Figure E-12. Final 

statistics show that Newton-Raphson significantly improves correlation, resulting in 

mean relative errors across all optimization frequency sets of 0.81% and 5.33% for the 

top and bottom skins respectively, improved from 5.08% and 6.96% for the initial  
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Table E-6: Material property variables summary: initial values, bounds, and correlated values 
produced by Newton-Raphson and MMTAC methods for each wing component case (‘lam’ – 
laminate; ‘SW’ – sandwich; ‘cap’ – spar cap; ‘web’ – spar web). 

  E11  
(GPa) 

E22  
(GPa) ν12 G12  

(GPa) 
G13 
(GPa) 

G23 
(GPa) 

ρ 
(g/cm3) 

Initial 
Values 
 

general 
plain/cap/web lam 128 123 0.150 5.68 4.14 4.14 n/a 
SW lam 93.8 84.8 0.150 5.68 4.14 4.14 n/a 
Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 0.0288 0.0556 n/a 

Bounds 

Upper 
plain/cap/web lam 138 138 0.400 8.27 n/a n/a n/a 

SW/web 138 138 0.400 8.27 n/a n/a n/a 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 n/a n/a n/a 

Lower 
plain/cap/web lam 68.9 68.9 0.001 1.38 n/a n/a n/a 

SW/web 48.3 48.3 0.001 0.69 n/a n/a n/a 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 n/a n/a n/a 

Newton 
Raphson 

Top skin 
plain lam 133 107 0.150 1.17 4.14 4.14 1.78 

SW lam 99.3 83.4 0.150 12.96 4.14 4.14 1.78 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 0.0288 0.0556 0.14 

Bottom skin 
plain lam 20.3 175 0.150 28.13 4.14 4.14 1.78 

SW lam 262 20.5 0.150 0.32 4.14 4.14 1.78 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 0.0288 0.0556 0.14 

Main spar 
cap lam 128 123 0.150 5.68 4.14 4.14 1.78 

web lam 93.8 84.8 0.150 5.68 4.14 4.14 1.78 

Aft spar 
cap lam 128 123 0.150 5.68 4.14 4.14 1.62 
web lam 93.8 84.8 0.150 5.68 4.14 4.14 1.62 

MMTAC 

Top skin 
plain lam 138 88.9 0.082 2.13 4.14 4.14 1.78 

SW lam 99.3 126 0.337 8.27 4.14 4.14 1.78 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 0.0288 0.0556 0.14 

Bottom skin 
plain lam 112 138 0.057 7.45 4.14 4.14 1.77 

SW lam 48.3 118 0.151 3.99 4.14 4.14 1.77 

Core 6.89×10-6 6.89×10-6 0.001 6.89×10-6 0.0288 0.0556 0.14 

Main spar 
cap lam 128 101 0.016 1.38 4.14 4.14 1.45 

web lam 138 79.3 0.034 1.85 4.14 4.14 1.45 

Aft spar 
cap lam 128 113 0.153 1.38 4.14 4.14 1.62 
web lam 68.9 68.9 0.160 1.38 4.14 4.14 1.62 

 

variable values, and that meta-model based test-analysis correlation improves correlation 

even more, with mean relative errors of 0.57% and 2.05% for the two skins. It should be 

noted that the added success of the meta-model based test-analysis correlation method 

was probably due at least in part to its ability to include more variables. As mentioned, 
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Newton-Raphson was not able to produce results for the spars; however, meta-model 

based test-analysis correlation resulted in correlated mean relative errors of 4.17% and 

7.04% for the main spar and aft spar, respectively, improved from initial values of 

10.08% and 20.98%. It should be noted that these spar correlation values are approximate 

because of mode blurring.  

 

 

Table E-7: Correlation result frequencies—reference, initial finite element, 
Newton-Raphson finite element, and meta-model based test-analysis 
correlation finite element. 

M
od

e Top skin        Bottom skin 

Ref (Hz) 
FEM (Hz) 

Ref (Hz) 
FEM (Hz) 

Nom NR MM Nom NR MM 

1 12.4 12.1 12.2 12.4 4.4 4.1 3.8 4.4 
2 23.9 24.3 23.9 24.1 11.5 10.8 10.0 11.7 
3 28.7 28.3 28.3 28.4 21.8 20.4 18.8 21.8 
4 35.0 35.2 34.8 35.0 23.4 24.8 25.3 23.5 
5 40.6 42.0 41.3 41.3 34.2 31.6 29.8 33.7 
6 42.3 43.4 41.6 42.4 35.6 37.9 37.3 36.3 
7 48.8 47.9 47.4 47.4 41.6 45.4 45.6 41.5 
8 51.8 52.8 51.8 51.8 47.6 43.0 40.9 46.0 
9 59.0 60.5 59.1 59.1 49.5 53.4 50.4 52.2 
10 66.7 68.2 66.2 66.2 61.4 55.3 53.0 59.4 
11 73.8 75.2 74.6 74.1 63.6 67.4 64.1 69.1 
12 75.6 77.0 75.6 75.7 62.5 70.6 66.5 73.6 
13 80.9 78.4 73.4 76.4 76.6 80.1 83.4 75.6 
14 82.7 86.5 83.1 83.2 83.4 88.3 78.2 87.7 
15 88.6 90.6 87.8 88.5 88.3 94.5 93.0 85.9 
16 91.4 95.6 91.0 91.4 90.3 81.3 77.6 88.6 
17 99.9 104.9 99.5 100.0 102.9 95.2 91.4 103.7 
18 108.6 110.6 107.8 109.7 106.3 107.7 96.8 107.0 
19 118.8 126.2 117.9 119.4 115.2 118.2 122.7 110.6 
20 124.6 119.4 118.3 108.8 118.7 109.5 104.4 119.5 
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Table E-8: Correlation result frequencies—reference, initial finite element, 
Newton-Raphson finite element, and meta-model based test-analysis 
correlation finite element. 

M
od

e Main Spar        Aft Spar 

Ref (Hz) 
FEM (Hz) 

Ref (Hz) 
FEM (Hz) 

Nom NR MM Nom NR MM 

1 22.2 24.7 n/a 22.5 24.4 26.0 n/a 24.0 
2 33.8 31.5 n/a 31.0 48.3 70.2 n/a 64.0 
3 46.1 48.6 n/a 47.4 62.3 67.4 n/a 65.9 
4 59.0 64.8 n/a 59.1 75.2 78.0 n/a 74.6 
5 70.2 75.2 n/a 72.8 103.5 116.1 n/a 111.0 
6 101.9 109.4 n/a 106.1 133.5 137.1 n/a 126.6 
7 116.4 126.8 n/a 115.6 137.4 164.1 n/a 156.8 
8 131.7 139.9 n/a 135.6 151.0 218.5 n/a 162.2 
9 154.4 183.1 n/a 176.1 187.7 225.7 n/a 210.7 
10 175.3 199.0 n/a 172.0 239.8 273.7 n/a 261.4 
11 186.8 206.9 n/a 188.0 267.0 168.3 n/a 308.8 
12 222.4 266.4 n/a 232.2 314.6 314.7 n/a 302.5 
13 240.0 241.5 n/a 237.4 308.8 344.6 n/a 328.5 
14 251.7 271.9 n/a 262.0 357.8 412.2 n/a 392.3 
15 261.0 301.2 n/a 271.9 333.9 470.6 n/a 355.2 
16 271.0 320.1 n/a 291.8 385.4 466.0 n/a 429.9 
17 282.3 329.9 n/a 314.3 * * * * 
18 308.9 365.5 n/a 331.8 * * * * 
19 343.6 394.6 n/a 370.6 * * * * 
20 359.5 406.8 n/a 373.7 * * * * 

 

A final comparison was made by assembling the component models into the full 

wing. Comparison to the measured experimental frequencies, as presented in Table E-8 

and Figure E-13, produced a final mean relative error across structural modes of 6.9% for 

initial values, 9.4% for Newton-Raphson, and 10.0% for meta-model based test-analysis 

correlation. In this case, both correlation routines produce worse results. This is likely to 

be largely due to the difficulty in correlating the spars, which are open section and 

therefore behave differently when vibrating as an independent free-free structure 
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compared to when they are bonded in the full wing, but which to a large extent control 

the structural modes of the assembled wing. An additional correlation would therefore 

need to be performed on the assembled wing, with priority given to correlating the spar 

cap E11 material properties.  

 

 

 

 

Figure E-12: Mean relative error of analytical frequencies to reference frequencies for the four wing 
components, showing relative correlation success: initial values vs. Newton-Raphson vs. meta-model 
based test-analysis correlation method. 
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A final observation about the correlation runs on the reasonably large wing 

component structures with all of the considered variables is that in most cases the results 

did not converge over the course of several iterations, and in some cases diverged after a 

certain point. This can be explained because of the lack of fit of meta-models to the finite 

element model, especially away from the training data. Since most of the training data is 

away from the point of initial values, as the iterations number grows and the perturbation 

amount shrinks, there is an ever greater region available away from the training data, and 

therefore greater risk of bad meta-model predictive capability. In this case, minimums 

can be created in the meta-model space that do not correspond to a finite element 

minimum, leading the variables to move away from the values they were approaching 

instead of converging.  

 

 

Table E-9: Correlation results—experimental vs. finite element frequencies 
for assembled wing (structural modes only). 

Mode Ref (Hz) Description 
Finite Element (Hz) 

Nom NR MM 

1 7.5 1st bending 8.2 8.9 8.7 

2 31.7 2nd bending 33.4 35.7 34.9 

3 67.6 3rd bending 65.9 66.6 65.7 

4 110.1 4th bending 94.1 98.9 97.1 

5 262.5 torsion/bend 268.2 255.0 241.0 
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Figure E-13: Mean relative error of analytical frequencies to reference frequencies for the assembled 
wing for nominal values, Newton-Raphson correlated values, and meta-model test-analysis 
correlated values. 

E.7  Meta-Model Based Test-Analysis Correlation Method Conclusions 

The following conclusions can be drawn from the meta-model based finite 

element model correlation work described in this chapter.  

 Meta-model based test-analysis correlation and Newton-Raphson both 

improve results, with meta-model based test-analysis correlation providing 

better correlation than Newton-Raphson, at least partially by allowing stability 

and therefore a larger number of variables to be included.  
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 Both methods are sensitive to the various parameters that are required be 

specified, in particular the number and specific selection of update variables, 

and the number and specific selection of features.  

 Modes can switch during variable variation, since finite element normal 

modes are always printed in order of ascending frequency, and so must be 

tracked to ensure that correct modes are being referenced; this can be 

accomplished algorithmically to allow automatic implementation. 

 Local minima are produced in the current configuration, especially when a 

large number of variables is considered. This observation is linked to the fact 

that combinations of material properties appear to not be unique when all 

update features are boiled down into a single scalar cost-function metric. An 

algorithmic routine implemented to help counter local minima during 

optimization improved results. 

 The form of the meta-models and their training—parameter selection, design-

of-experiment type, perturbation, optimization—factor into their ability to 

emulate the finite element input-output behavior closely; this is helped to 

some extent by iterations, but iterations can hurt stability as well.  

 The biggest single limiting factor in correlation accuracy, assuming all 

algorithm parameters are set intelligently, is getting meta-models which 

represent the finite element model well over a useful variable space.  
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 Meta-model based test-analysis correlation performance could be improved 

with more sophisticated components, such as better meta-models, more 

training data, and test-analysis optimization more robust to local minima. 

The material contained in Appendix E was developed in collaboration with Prof. 

John B. Kosmatka, Prof. Charles Farrar, and Dr. Francois Hemez. The dissertation author 

was the primary investigator and author of this work. 
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